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Two-dimensional molybdenum disulfide (MoS2) is a promising material for the next generation of
switchable transistors and photodetectors. In order to perform large-scale molecular simulations of
the mechanical and thermal behavior of MoS2-based devices, an accurate interatomic potential is
required. To this end, we have developed a Stillinger-Weber potential for monolayer MoS2. The
potential parameters are optimized to reproduce the geometry (bond lengths and bond angles) of
MoS2 in its equilibrium state and to match as closely as possible the forces acting on the atoms
along a dynamical trajectory obtained from ab initio molecular dynamics. Verification calculations
indicate that the new potential accurately predicts important material properties including the strain
dependence of the cohesive energy, the elastic constants, and the linear thermal expansion coeffi-
cient. The uncertainty in the potential parameters is determined using a Fisher information theory
analysis. It is found that the parameters are fully identified, and none are redundant. In addition, the
Fisher information matrix provides uncertainty bounds for predictions of the potential for new
properties. As an example, bounds on the average vibrational thickness of a MoS2 monolayer at
finite temperature are computed and found to be consistent with the results from a molecular
dynamics simulation. The new potential is available through the OpenKIM interatomic potential
repository at https://openkim.org/cite/MO_201919462778_000. Published by AIP Publishing.
https://doi.org/10.1063/1.5007842

I. INTRODUCTION

Since the discovery of graphene,1 two-dimensional (2D)
nanostructures have attracted significant interest for potential
applications in areas including electronics, sensors, and pho-
tonics due to their astounding electronic,2–5 optical,6,7 ther-
mal,8,9 and mechanical10–12 properties. Monolayer MoS2 is a
member of the transition metal dichalcogenides family of 2D
materials whose bulk counterpart has long been used for dry
lubrication and as a catalyst in industry.11,13 Monolayer MoS2

is a direct gap semiconductor with a bandgap of 1.8 eV,5 mak-
ing it an ideal candidate for electronic and optoelectronic
applications where a nonzero band gap is mandatory.

The most accurate methods for simulating the response
of MoS2 are first principles (ab initio) approaches, which
involve solving the Schr€odinger equation for the quantum
system of nuclei and electrons. However, such methods are
computationally very expensive and are typically limited to
systems consisting of at most a few hundred atoms due to
hardware and algorithmic limitations. Empirical interatomic
potentials provide an alternative approach. Even complex
interatomic potentials are far less expensive to compute than

a first principles approach, which enables simulations of
problems that are inaccessible to quantum calculations, such
as fracture and atomic diffusion.14–16

To date, several empirical potentials for MoS2 have been
proposed. The earliest published in 1975 is a valence force
field (VFF) model by Wakabayashi et al.17 in which the
potential energy was decomposed into harmonic components.
The interlayer interaction was assumed to be due to an axially
symmetric force between sulfur atoms of neighboring layers,
and the intralayer interaction was assumed to be associated
with the stretching and bending of Mo-S bonds. The potential
parameters were optimized to reproduce the phonon spectrum
obtained from inelastic neutron scattering. Liang et al.18

developed a second-generation reactive empirical bond-order
(REBO) potential for the Mo-S system using the master
formula underlying the Abell,19 Tersoff,20–22 and REBO23

potentials with an additional Lennard-Jones24,25 potential to
describe the weak interlayer van der Waals interactions. This
potential was fit to a training set of the energy, bond length,
and bond stiffness of Mo-Mo, Mo-S, and S-S systems with
the main objective to reproduce the structural and elastic
properties of MoS2. Jiang et al.26,27 developed two Stillinger-
Weber28 (SW) potentials for monolayer MoS2. The first one26

considered all available two-body and three-body interactions
in monolayer MoS2 and was fit to the same phonon spectrum
used in the VFF model.17 In the second parameterization,27
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Mo-Mo and S-S two-body interactions were neglected, and
the potential was fit to bond lengths and bond angles from
experiments and first principles calculations, and to energies
predicted by the VFF model.17 Very recently, a reactive force
field (ReaxFF) potential was developed by Ostadhossein
et al.29 to study energetics and reaction mechanisms in single-
and multi-layer MoS2. The ReaxFF potential was fit to a train-
ing set of energies, geometries, and charges derived from first
principles density functional theory (DFT) calculations for
both clusters and periodic systems.

An important characteristic of an empirical potential
is its transferability, i.e., its ability to accurately predict
behavior that it was not fit to reproduce. Experience has
shown that transferability tends to be improved when the
training set is extended beyond a small set of selected mate-
rial properties. In the force-matching method proposed by
Ercolessi and Adams,30 this is done by fitting the potential
to the forces acting on the atoms along a dynamical trajec-
tory obtained from ab initio molecular dynamics (AIMD).
Transferability is likely enhanced by this procedure since the
potential is exposed to a much larger cross-section of config-
uration space. An additional advantage is that the issue of
insufficient training data that may occur in traditional fitting
procedures can be resolved since as many configurations as
needed can be readily generated.

Recent developments in sensitivity analysis of stochas-
tic systems based on relative entropy measures and Fisher
information theory31–33 have led to a deeper understanding
of the force-matching methodology. It is now recognized
that force matching is equivalent to relative entropy mini-
mization provided that the training set of forces is obtained
from a trajectory that samples the appropriate distribution
function.34 This improves the transferability of the potential
since it can be shown that minimizing relative entropy also
bounds the uncertainty in predictions of other observ-
ables.35 The statistical mechanics approach to force match-
ing was originally studied for equilibrium conditions36,37

and later extended to nonequilibrium steady states.35 This
generalization allows for the treatment of driven systems
subject to external conditions, such as thermal gradients and
deformations.

In this paper, we apply an information-theoretic based
force-matching approach to retrain the SW potential of
Jiang et al.26,27 We find that this significantly improves the
accuracy of the potential for a variety of properties. In addi-
tion, the information theory analysis yields (1) the uncer-
tainty in the fitting parameters (i.e., the confidence with
which the parameters are determined from a given training
set); and (2) the sensitivity of the potential’s predictions on
its parameters (i.e., how variations in the parameters affect
the results).38,39

The paper is structured as follows: In Sec. II, we intro-
duce the SW potential for MoS2. This is followed by a
description of the parameterization process in Sec. III. In
Sec. IV, we present the fitting results and test the potential
predictions for several properties of interest. An information-
based sensitivity analysis is carried out in Sec. V. We sum-
marize our results in Sec. VI.

II. STILLINGER-WEBER POTENTIAL

The SW potential was originally introduced to model bulk
silicon.28 The innovation in this potential was the inclusion of
a three-body term to penalize configurations away from the tet-
rahedral ground state structure of Si. The potential was later
extended to other tetrahedral material systems including Ge,40

III-V compound semiconductors,41 and compounds of the
major II-VI elements Zn, Cd, Hg, S, Se, and Te.42 It has been
adapted for monolayer MoS2 and monolayer black phosphorus
that do not have a tetrahedral structure.26,27

The total SW potential energy V of a system consisting
of N atoms is

V ¼
XN

i¼1

XN

j>i

/2ðrijÞ þ
XN
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XN

j6¼i

XN

k > j
k 6¼ i
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where the two-body interaction takes the form
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and the three-body term is
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jik
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ĉIJ
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þ ĉIK
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in which rij ¼ kri % rjk is the bond length between atoms i
and j, bjik is the bond angle formed by bonds i–j and i–k with
the vertex at atom i, and b0

jik is the corresponding predeter-
mined reference angle. The potential parameters are !; Â;B;
p; q; r; a; k̂; ĉ. Both the two-body and three-body terms are
designed to be identically zero at the cutoff radius rcut ¼ ar.
The parameters depend on the species of the interacting
atoms, which are indicated by uppercase subscripts. For
example, !IJ is the parameter ! for the pairwise interaction
between atom i of species I and atom j of species J.

Equations (2) and (3) can be recast in a form in which
all parameters are independent and the dependence on the
cutoff radius is made explicit. We define AIJ ¼ !IJÂIJ , k̂JIK

¼ !JIK k̂JIK , cIJ ¼ rIJ ĉIJ , and rcut
IJ ¼ aIJrIJ , then

/2ðrijÞ ¼ AIJ BIJ
rij

rIJ

! "%pIJ

%
rij

rIJ

! "%qIJ

" #

& exp
rIJ

rij % rcut
IJ

! "
; (4a)

/3ðrij; rik; bjikÞ ¼ kJIK cos bjik % cos b0
jik

h i2

& exp
cIJ

rij % rcut
IJ

þ cIK

rik % rcut
IK

! "
: (4b)

The new parameters are A;B; p; q; r; k; c along with the cut-
off radii and equilibrium angles. Note that when r > rcut,
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both /2 and /3 vanish. For MoS2, we add an additional cut-
off rcut'

JK for bond j–k in /3, that is, /3 vanishes as well when
rjk > rcut'

JK . This will be explained in Sec. II A.
Based on the work of Jiang et al.,26,27 two-body bond

stretching (or compression) is considered for three types of
interaction, i.e., IJ 2 fMo%Mo; Mo% S; S% Sg in (4a).
For three-body bond bending, only interactions of type S-
Mo-S (Mo is the species of the vertex atom) and Mo-S-Mo (S
is the species of the vertex atom) are considered, i.e., in (4b)
JIK 2 fS%Mo% S;Mo% S%Mog. Consequently, there
are only two k parameters (kS%Mo%S and kMo%S%Mo) and a sin-
gle c parameter (c ¼ cMo%S ¼ cS%Mo). We will denote the set
of all parameters as h in the following discussion.

A. Cutoffs and bond angles

The crystal structure of monolayer MoS2 is shown in Fig.
1. It consists of a monatomic Mo plane sandwiched between
two monatomic S planes. Mo and S atoms occupy alternating
corners of a hexagon to form a honeycomb structure. A unit
cell, the green shaded region in Fig. 1(a), consists of one Mo
atom and two S atoms. The in-plane zero-temperature equilib-
rium lattice constant of the relaxed structure obtained using
the first principles code SIESTA43 is a0¼ 3.20 Å, and the ver-
tical separation between S layers is b0¼ 3.19 Å. Each Mo
atom is surrounded by six first-nearest-neighbor S atoms and
each S atom is connected to three first-nearest-neighbor Mo
atoms.

The cutoff rcut
IJ is set to the second-nearest neighbor dis-

tance of the corresponding IJ species. As an example, con-
sider the calculation of rcut

S%S. Referring to Fig. 1(b), the
nearest neighbors of atom S2 are S1, S3, and S5. In fact
dS2%S1 ¼ dS2%S3 ¼ a is slightly larger than dS2%S5 ¼ b; how-
ever, we ignore this small difference and treat all these atoms
as the first neighbor ring for the purpose of determining the
cutoff and the parameter rS%S (as explained below). The sec-
ond neighbors of S2 are atoms S4 and S6. Therefore,

rcut
S%S ¼ dS2%S4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2
p

¼ 4:51956 Å. The other two cut-

offs are determined in a similar fashion: rcut
Mo%Mo ¼

ffiffiffi
3
p

a

¼ 5:54660 Å and rcut
Mo%S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2=3þ b2=4

p
¼ 4:02692 Å.

As pointed out by Zhou et al.,42 the SW two-body and
three-body functions decay to close to zero at a distance
smaller than the cutoff radius due to the presence of the expo-
nential terms. This is demonstrated in Fig. 2 for the /2ðrÞ

function for the sample parameters listed in the caption. It is
clear that while the theoretical cutoff is 5:55 Å, the potential
energy becomes negligibly small beyond an effective cutoff
of about r ¼ 5:10 Å. If desired, this characteristic can be
employed to expedite molecular dynamics (MD) simulations
by using the effective cutoff rather than the theoretical one to
compute neighbor lists.42

In the three-body term /3, an additional cutoff is
employed to exclude certain interactions. Each Mo atom is
surrounded by six first-nearest-neighbor S atoms, resulting in
three different types of S-Mo-S angles after accounting for
symmetry [b1, b2, and /S2-Mo-S4 in Fig. 1(b)]. While b1

and b2 are almost of the same value, /S2-Mo-S4 is much
larger. Because (4b) only allows for one equilibrium angle, it
is desirable to exclude large-angle interactions of the third
type so that the equilibrium structure of MoS2 can be cor-
rectly described. (Note that this is not a concern for Mo-S-
Mo interactions, since there is only one type of Mo-S-Mo
bond with a bond angle equal to b1.) Following Refs. 26 and
27, and the GULP package,45,46 in addition to the two cutoffs
rcut

IJ and rcut
IK included in (4b), a new cutoff rcut'

JK is applied to
rjk when J and K are S atoms. For rjk > rcut'

JK , the 3-body
term involving atoms j, i, and k is ignored. We take the addi-
tional cutoff to be rcut'

S%S ¼ 3:86095 Å corresponding to the
average of the first- and second-nearest-neighbor distances
of S-S bonds. This cutoff allows for bond angle interactions
of types b1 and b2, but /S2-Mo-S4 type interactions will be
excluded. We note that this introduces a discontinuity in the
potential energy since the 3-body term is abruptly removed
at rjk ¼ rcut'

JK . The maximum discontinuity can be 2.67 eV,
but this occurs when atom i is located in the middle between
atoms j and k, which is far from the equilibrium structure. As
long as the system is not subjected to extreme deformations
far from the equilibrium ground state, the discontinuity will
be mild if encountered and should not adversely affect
molecular simulations.

Given a0¼ 3.20 Å and b0¼ 3.19 Å, it is straightforward
to show that the angles in Fig. 1(b) are b1 ¼ 81:92

(
and

b2 ¼ 81:61(. Since the angles are quite close, we choose to

FIG. 1. The crystal structure of monolayer MoS2. (a) Top view, where the
green shaded region depicts a unit cell. (b) Oblique view of the shaded unit
cell in (a). Each Mo atom is surrounded by six first-nearest-neighbor S atoms
and each S atom is connected to three first-nearest-neighbor Mo atoms.
Images rendered with AtomEye.44

FIG. 2. Pair function /2ðrÞ of the SW potential, whose effective cutoff is
much smaller than the theoretical one. The parameters used in the plot are
A ¼ 4:15 eV, B¼ 0.44, p¼ 5, q¼ 0, r ¼ 2:85 Å, and rcut ¼ 5:55 Å.
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use the same b0 as the reference angle for both S-Mo-S and
Mo-S-Mo three-body interactions. We set b0 ¼ 81:79(,
which is the value of both b1 and b2 if a0 and b0 are equal.

B. Predetermined parameters and constraints

Aside from the cutoff radii specified in Sec. II A, the
SW potential for MoS2 has 18 parameters: three values each
for A;B; p; q; r, two for k, and one for c. It is non-trivial to fit
so many parameters at once given that the potential is highly
nonlinear. To facilitate the fitting process and make it more
robust, some parameters are determined a priori and the val-
ues of some others are constrained.

In other parameterizations of the SW potential,26–28,42

the exponents q and p were taken to be 0 and 4, respectively.
Here, we take q¼ 0, but allow p to be a fitting parameter that
can only take on integer values.

In the original SW potential for Silicon,28 Stillinger
and Weber determined r by requiring rm ¼ 21=6r, where
rm is the distance at which /2ðrÞ reaches its minimum.47 In
this work, r is obtained in the same way. Given the lattice
constants of the relaxed MoS2 structure, a0¼ 3.20 Å and
b0¼ 3.19 Å, the equilibrium bond lengths can be computed
as dMo%Mo ¼ 3:20 Å; dMo%S ¼ 2:44 Å, and dS%S ¼ 3:19 Å.
Thus, we have rMo%Mo ¼ 2:85295 Å; rMo%S ¼ 2:17517 Å,
and rS%S ¼ 2:84133 Å.

As in Ref. 27, we require that in the ground state struc-
ture all bonds are at their equilibrium lengths and all angles
are at their equilibrium values, i.e., ð@/2=@rÞjr¼d ¼ 0 and
ð@/3=@bÞjb¼b0 ¼ 0. The latter is satisfied automatically, and
the former leads to a constraint relating B, p, q and r

B ¼ qðd=rÞ%1%qðd % rcutÞ2 þ ðd=rÞ%qr2

pðd=rÞ%1%pðd % rcutÞ2 þ ðd=rÞ%pr2

¼ 1

pd%p%1rp%1ðd % rcutÞ2 þ d%prp
; (5)

where d is the equilibrium bond length computed above and
in the last equality q¼ 0 was used.

Accounting for the preset parameters and applying the
constraint in (5), the parameters left to be determined are
h ¼ fA; p; k; cg. This is a small subset of all the parameters,
which greatly helps with the fitting process described next.

III. PARAMETERIZATION

In the force-matching method,30,35 a parameterized inter-
atomic potential is fit to first principles forces for a training
set of atomic configurations. If the configurations in the train-
ing set are obtained by sampling a thermodynamic ensemble
(e.g., the canonical NVT ensemble or the isothermal-isobaric
NPT ensemble), then the parameterization not only optimizes
the forces but all observables that are defined as averages
over the stationary distribution.35 This significantly enhances
the transferability of the potential. In this work, the training
set is generated from a long thermostatted trajectory in the
NPT ensemble from an AIMD simulation.

The force-matching method has been widely used since
its introduction, and there are a number of open source

implementations available. The potfit program originally
developed by Brommer et al.48–50 is widely used in solid-
state physics. In Ref. 16, we adapted potfit to be compliant
with the KIM Application Programming Interface (API) stan-
dard (part of the Knowledgebase of Interatomic Models
Project,51 which is an online suite of open source tools for
molecular simulation of materials. https://openkim.org). This
makes it possible to use potfit to fit any KIM potential model,
not just those prebuilt in the potfit code. A difficulty associ-
ated with potential fitting is that interatomic potentials are
nonlinear functions that are often “sloppy” in the sense that
their predictions are insensitive to certain combinations of
their parameters.52 Transtrum et al.53,54 augmented the
Levenberg–Marquardt (LM) algorithm with a geodesic accel-
eration adjustment to improve convergence of sloppy models.
The geodesic LM minimization algorithm was incorporated
into KIM-potfit,16 and in this work, it is used to optimize the
potential parameters. In subsections III A and III B, we dis-
cuss the choice of training set and the cost function.

A. Training set

The training set trajectory was obtained by AIMD using
the DFT code SIESTA.43 The interactions between ionic
cores and valence electrons were modeled by a double zeta
polarized basis set and norm-conserving pseudopotential55

constructed within the Troullier-Martins formalism.56 The
exchange-correlation energy of the electrons is treated within
the Generalized Gradient Approximated (GGA) Perdew-
Burke-Ernzerhof functional.57 An energy cutoff of 90 Ry
was used for the representation of charge density and poten-
tials. Brillouin zone integration was carried out at a single k-
point (C point).58

In the training set calculations, periodic boundary condi-
tions were applied in all three directions with a vacuum of
30 Å perpendicular to the MoS2 layer to minimize interactions
between periodic images. The training set was constructed
as follows. First, the equilibrium MoS2 lattice structure was
obtained by performing a full relaxation of a single unit cell
allowing the cell to change its volume and shape until all stress
components were less than 0.1 kBar and allowing the atoms to
move until all forces were less than 0.03 eV/Å. The relaxed
unit cell has an in-plane lattice constant of a0¼ 3.20233 Å and
the separation between the two sulfur layers is b0¼ 3.18928 Å
(see Fig. 1). Second, a rectangular block supercell was con-
structed with in-plane dimensions of 25.61 Å& 33.28 Å (cor-
responding to 8& 12 relaxed unit cells) consisting of N¼ 288
atoms: 96 Mo atoms and 196 S atoms. Third, AIMD simula-
tions were performed using the supercell under NPT condi-
tions with a pressure of p¼ 0 and temperature of T¼ 750 K.59

The atoms were initially assigned random velocities drawn
from the Maxwell-Boltzmann distribution with the tempera-
ture equal to twice the target temperature. The system was
then integrated in time for 3000 steps with a time step of Dt
¼ 0:7 fs. The first 1000 steps were discarded to allow the sys-
tem to equilibrate. In the subsequent 2000 steps, the atom
coordinates r and the forces on the atoms f 0 were recorded in
the training set. Thus, the training set is fðrm; f

0
mÞg

M
m¼1, where

M¼ 2000, rm 2 R3N , and f 0
m 2 R3N .
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B. Cost function

KIM-potfit defines a “cost function” quantifying the dif-
ference between the training set data and interatomic poten-
tial predictions and uses minimization algorithms to reduce
the cost as much as possible. For a training set consisting of
M configurations, the force-matching cost function is

CðhÞ ¼
XM

m¼1

1

2
wmkf ðrm; hÞ % f 0

mk
2; (6)

where h are the potential parameters and wm is the weight for
configuration m. We take all weights to be unity since all
forces in a configuration and all configurations are equally
important. The forces on the atoms in configuration m pre-
dicted by the potential are given by the negative gradient of
the potential energy with respect to the atom coordinates,
f ðrm; hÞ ¼ ð%@V=@rÞjrm

, and f 0
m are the corresponding refer-

ence forces in the training set obtained from the AIMD tra-
jectory. Note that f ðrm; hÞ 2 R3N is the concatenated vector
of the forces acting on the N atoms in the configuration.

The objective is to determine the optimal set of parame-
ters h that minimizes the cost function C.

IV. RESULTS AND PREDICTIONS

The SW potential parameters were obtained by minimiz-
ing the cost function in (6) for the training set described
in Sec. III A using the geodesic LM algorithm implemented in
KIM-potfit.16 The initial guesses of the parameters were taken
from Ref. 26. The fitted parameters are listed in Tables I and
II. We denote the new SW potential as SW-FM (Stillinger-
Weber Force Matching) for later use in comparison.

To test the accuracy of the SW-FM potential, we com-
puted the temperature dependence of the lattice constants and
stiffness of MoS2. These properties are important for the
design of MoS2 based electronic devices, since internal stress
or strain due to thermal expansion can degrade performance
or even cause damage.13 The calculations were performed
using the classical atomic simulation code LAMMPS60,61

(which is compatible with the KIM API). For all simulations,
periodic boundary conditions were applied in all directions,
with a spacing of 40 Å in the direction perpendicular to the
MoS2 layer to isolate it from its periodic images. The simula-
tion setup and results for the different properties are described
below.

A. Lattice constants and cohesive energy

The zero-temperature equilibrium lattice constants and
cohesive energy of MoS2 were obtained by minimizing the
energy of a single unit cell using conjugate gradients with
energy and force tolerances of 10–10 eV and 10–10 eV/Å,
respectively. The results for the SW-FM potential along with
other potentials and DFT results are listed in Table III. As
expected, both a0 and b0 agree with the SIESTA predictions
since the potential r parameters were preset to reproduce the
equilibrium structure as explained in Sec. II B. The cohesive
energy per unit cell Ec predicted by SW-FM is in good
agreement with SIESTA (and other DFT) results.

The cohesive energy versus lattice constant curves plotted
in Fig. 3 for different potentials and SIESTA show the effect
of stretching and compressing MoS2, which can be important
for practical applications due to prestraining or rippling. The
points were computed by creating a unit cell with in-plane lat-
tice constant a and relaxing the unit cell atoms in the out-of-
plane direction. The results show that SW-FM agrees with
DFT SIESTA results across the entire range of stretching and
compression (about 615%), whereas other potentials agree
either in tension or in compression, but not both.

B. Elastic constant

The zero-temperature elastic constants were computed
using LAMMPS by finite difference, C11 ¼ Dr1=D!1 and
C12 ¼ ðDr1=D!2 þ Dr2=D!1Þ=2 in Voigt notation, where Dr

TABLE I. Fitted SW potential parameters in the two-body term /2.

Interaction

Parameter Mo-Mo Mo-S S-S

A ðeVÞ 3.9781804791 11.3797414404 1.1907355764

B 0.4446021306 0.5266688197 0.9015152673

p 5 5 5

q 0 0 0

r ðÅÞ 2.85295 2.17517 2.84133

rcut ðÅÞ 5.54660 4.02692 4.51956

TABLE II. Fitted SW potential parameters in the three-body term /3.

kS%Mo%S ¼ 7:4767529158 eV kMo%S%Mo ¼ 8:1595181220 eV

c ¼ 1:3566322033 Å b0 ¼ 81:7868
(

rcut
Mo%S ¼ 4:02692 Å rcut'

S%S ¼ 3:86095 Å

TABLE III. Equilibrium lattice constants a0 and b0 (Å), cohesive energy Ec

per unit cell (eV), and elastic constants C11 and C12 (N/m) for SW-FM, other
potentials in the literature, and first principles results.

Method a0 b0 Ec C11 C12

SW-FM 3.19702 3.19386 15.28 119.2 41.0

SW-Jiang 2013 3.09368 3.18216 12.76 140.8 52.7

SW-Jiang 2015 3.11072 3.12898 3.72 105.0 28.7

REBO 3.16752 3.24248 21.48 154.4 45.8

ReaxFFa 3.19 3.11 15.20 205.1 81.6

SIESTA (GGA: PBE) 3.20 3.19 15.90 … …

VASP (GGA: PW91)b 3.20 3.13 15.55 … …

VASP (LDA)c 3.11 3.11 19.05 … …

VASP (GGA: PBE)c 3.19 3.13 15.21 … …

VASP (LDA)c 3.13 3.12 18.75 … …

VASP (LDA)d … … … 140.0 40.0

VASP (GGA: PBE)d … … … 130.0 40.0

VASP (GGA: PBE)e … … … 132.7 33.0

aReference 29.
bReference 62.
cReference 63.
dReference 11.
eReference 64.
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and D! are the stress and strain induced by infinitesimally
displacing atoms from their equilibrium positions.

Due to symmetry C11 and C22 are the same, which means
that orientation (at least the armchair and zigzag directions)
does not affect the elastic behavior of MoS2. The results for
C11 and C12 are listed in Table III. The SW-FM predictions
are in good overall agreement with DFT, comparable with
the other potentials (except for the ReaxFF potential, which
appears to overestimate the elastic constants).

C. In-plane linear thermal expansion coefficient (LTEC)

The in-plane linear thermal expansion coefficient (LTEC)
aL of MoS2 provides a measure of the temperature depen-
dence of the lattice constants. There are two main methods for
calculating LTEC from MD simulations. First, in the direct
method, the LTEC is computed from its definition by taking
the first derivative of lattice constant with respect to tempera-
ture at constant pressure

aL ¼
1

a

@a

@T

$$$$
p

: (7)

Second, in the fluctuation method, the LTEC is computed as
an ensemble average of the covariance of the Hamiltonian H
and the volume V65

aL ¼
1

2kBT2hVi
hHVi% hHihVi½ *; (8)

where h+i denotes a phase average and kB is the Boltzmann
constant. A detailed derivation of (8) is given in Appendix A.

To generate the data for both methods, a series of
isothermal-isobaric (NPT) MD simulations were performed
with a configuration of 1200 atoms (400 Mo and 800 S) at
different temperatures and zero pressure. The equations of
motion were integrated using a velocity-Verlet algorithm with
a time step of 1 fs. The system was initially maintained at con-
stant temperature using a Langevin thermostat for 106 time

steps. Then, a Berendsen barostat was added and the system
was evolved for another 106 time steps. This equilibration
phase effectively dissipates lattice phonons generated by the
initial conditions. Finally, the system was switched to an
isothermal-isobaric (NPT) ensemble for 107 time steps using a
Nose-Hoover thermostat and barostat to control the tempera-
ture and pressure with damping coefficients of 0.01 fs–1 and
0.001 fs–1, respectively.

At a given temperature, the equilibrium supercell size in
the x direction, Lx, was computed by averaging the instant cell
size values. The equilibrium lattice constant defined in (7) fol-
lows as a ¼ Lx=c, where c is the number of unit cells along the
x direction in the supercell. [For example, if we use the system
depicted in Fig. 1(a), c equals 4.]66 The equilibrium lattice con-
stant at different temperatures is plotted in Fig. 4(a). To obtain
the corresponding LTEC curve using the direct method in (7),
it is necessary to obtain the slope of the lattice constant curve.
To this end, we use the Gaussian process regression (GPR)
method implemented in Scikit-learn67,68 to fit the lattice con-
stant data [blue line in Fig. 4(a)].69 The LTEC is then computed
from (7) by using finite differences to compute the derivative

FIG. 3. Energy of unit cell as a function of in-plane lattice constant a. The
data points are shifted such that all minima coincide. Ec and a0 for each
potential are listed in Table III.

FIG. 4. (a) Equilibrium lattice constant a, and (b) the corresponding LTEC
aL computed using the direct method for the SW-FM potential.
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of the GPR curve. To use GPR, it is necessary to provide lattice
constant uncertainty. To compute this uncertainty at a given
temperature, ten subsets, each with 5& 105 simulation steps,
were drawn randomly and independently from the simulation
trajectory. The mean lattice constant was computed for each
subset, and from this set of values, the standard deviation was
obtained and used as the uncertainty. The result is plotted in
Fig. 4(b). The numerical values of the standard deviations are
too small to be seen, so they are not depicted in the figures.

For the fluctuation method, aL was computed using (8).
The resulting LTEC aL values are plotted in Fig. 5. Similar
to the direct method, GPR was used to fit the data with
uncertainties computed using the same procedure described
above. In the figure, the uncertainties are shown as error
bars, and the 95% confidence interval predicted by GPR is
plotted as the shaded green region.

Both the direct and fluctuation methods using SW-FM
show that the LTEC aL increases quickly at low temperatures
and saturates at about 400 K. These results are in agreement
with quasiharmonic DFT predictions,9,13 and classic MD pre-
diction70 using the REBO potential.18 We also computed the
temperature dependence of the in-plane lattice constant using
the original SW potentials in Refs. 26 and 27. The former26

predicts that the lattice constant decreases with increasing
temperature, resulting in a negative LTEC aL. The latter27

predicts a positive increasing LTEC aL in the temperature
range 0 to 900 K, that is, the LTEC aL does not saturate at
high temperature as observed by SW-FM and other sources
as described above.

V. SENSITIVITY ANALYSIS

We perform a sensitivity analysis of the SW-FM poten-
tial based on Fisher information theory extended to path-
space distributions.35,71 This analysis has two objectives.
First, it provides an estimate for the uncertainty in the SW-
FM potential parameters, that is, how well the parameters
are identified from the training set. Second, it provides an
estimate for the uncertainty in the predictions of the SW-FM
potential for new properties. The analysis is based on the

path-space Fisher information matrix (FIM), which is an
extension of the traditional FIM and plays a similar role.33

For the force-matching potential fitting problem considered
in this work, the path-space FIM has the following form:72

FijðhÞ ¼
1

2kBTg
Eeq

@f ðr; hÞ
@hi

+ @f ðr; hÞ
@hj

" #

, 1

2kBTg
1

M

XM

m¼1

@f ðrm; hÞ
@hi

+ @f ðrm; hÞ
@hj

: (9)

The expected value Eeq½+* denotes averaging with respect
to an equilibrium (stationary) distribution of the observed
dynamics. This is approximated by ergodic averaging on an
equilibrated trajectory where M is the number of sampled
configurations in the training set. The damping coefficient g
is associated with the thermostat used to control temperature
in the AIMD simulation. In our simulations g ¼ 0:02 fs%1.

The path-space FIM was evaluated for the fitted parame-
ters given in Tables I and II. The derivatives of the SW-FM
force f with respect to the potential parameters h were calcu-
lated by finite difference using Ridders’ method.73,74

A. Parameter uncertainty

The diagonal elements of the inverse FIM provide a
lower bound on the variance of any unbiased estimator ĥ for
the parameters, known as the Cram!er-Rao bound38,39

Varh ĥi

% &
- F%1½ *ii: (10)

In cases where the magnitudes of the model parameters
differ greatly (as in our case where the parameters range over
more than an order of magnitude), it is helpful to perform a
relative parameter analysis by using the logarithm of the
parameters instead of the parameters themselves. Defining
~hi ¼ log hi, it can be shown (see Appendix B) that the FIM in
the logarithm parameter space is

~Fij ¼ hiFijhj: (11)

In terms of the logarithmic parameter space FIM, the Cram!er-
Rao bound in (10) becomes (see Appendix B)

Varh ĥi=hi

h i
- ~F

%1
% &

ii: (12)

This serves as an estimate for the uncertainty in the obtained
parameters in a fractional sense.

The diagonal elements of the inverse FIM, ½~F%1*ii, are
plotted in Fig. 6. We see that all elements are within two
orders of magnitude of each other and there are no parame-
ters with extremely low values compared with the rest. This
suggests that all parameters in the potential are identified,
and there is no cause to simplify the model by removing
undetermined parameters.

Examining the results more closely, we see that for the
two-body interaction parameters (A, B, p, and r), the lower
bounds for the standard deviation of the logarithmic parame-
ters ~h associated with Mo-S interactions are smaller than
their Mo-Mo and S-S counterparts, which loosely indicates

FIG. 5. LTEC aL computed using the fluctuation method for the SW-FM
potential. The line is a GPR fit to the data.
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that the Mo-S parameters are better determined. This is con-
sistent with our knowledge of bonding in MoS2, where the
Mo-S bonds are shortest and expected to be strongest.75

B. Model uncertainty

The diagonal elements of the FIM provide an upper
bound on the uncertainty due to variations in parameters in
any observable predicted by the model that is obtained by
averaging with respect to an equilibrium distribution in
phase space. The bound is32,33,35

jEhþeiDhi /½ * %Eh /½ *j . Stdh /½ *jDhij
ffiffiffiffiffiffi
Fii

p
; (13)

where Eh½/* is the expectation of / using the parameter set
h; Stdh½/* is the corresponding standard deviation, Dhi is a
perturbation of parameter hi, ei is a unit vector of dimension
P (where P is the number of parameters) with the ith compo-
nent equal to one and all others zero. Thus, the diagonal of
the FIM provides an upper bound on the uncertainty of the
predictions of the potential to its fitting parameters. The larger
Fii, the more sensitive the predictions are to parameter hi.

The diagonal elements of the FIM, Fii, are plotted in
Fig. 7. We see that the SW-FM potential is most sensitive to
rMo%S and least sensitive to kMo%S%Mo. The ratio of Fii for
these two parameters is on the order of 105. In particular for
the two-body interaction parameters (B, p, and r), as we
noted above, the potential is more sensitive to parameters
associated with Mo-S interactions than to those associated
with Mo-Mo and S-S interactions.

As an example for the bound in (13), we take the observable
Ehð/Þ to be the mean thickness #t of a MoS2 sheet

#t ¼ Eh
1

N

XN

i¼1

ztop
i %

XN

i¼1

zbot
i

 !" #

; (14)

N is the number of atoms in each sulfur layer, ztop
i is the coor-

dinate perpendicular to the MoS2 plane of atom i in top layer,
and zbot

i is similarly defined for the bottom layer. The mean
thickness #t was computed by performing an MD simulation
at T¼ 750 K using LAMMPS with the same setup used for

calculations of the LTEC in Sec. IV C, however under NVT
conditions. The simulation was repeated ten times with dif-
ferent initialization of atom velocities to compute the stan-
dard deviation that appears on the right-hand side of (13).

Equation (13) was evaluated for the parameters associ-
ated with the maximum and minimum diagonal FIM ele-
ments (see Fig. 7), rMo%S and kMo%S%Mo, respectively. These
are the parameters with respect to which observables will be
most and least sensitive.

To evaluate (13), the mean thickness in (14) was com-
puted for the parameter set h in Tables I and II, and also for
hþ eiDhi for the two studied parameters with Dhi ¼ 0:01hi.

For parameter hi ¼ rMo%S, we find

Left of 13ð Þ ¼ j3:21887% 3:19900j ¼ 0:01987

Right of 13ð Þ ¼ 0:00087& ð0:01& 2:17517Þ

&
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7:02436& 106

p
¼ 0:05016; (15)

and for parameter hi ¼ kMo%S%Mo, we find

Left of 13ð Þ ¼ j3:19874% 3:19900j ¼ 0:00026

Right of 13ð Þ ¼ 0:00087& ð0:01& 8:15952Þ

&
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:13313& 102

p
¼ 0:00076: (16)

We see that as expected (13) is satisfied for both parameters,
and at least in this case, the bounds are rather tight. Thus,
(13) can be used to estimate the reliability of a model in
making new predictions.

VI. SUMMARY

The accuracy of an interatomic potential is critical to
atomistic simulations of 2D monolayer MoS2. We have
parameterized a SW potential for MoS2 using the force-
matching method (SW-FM), where the potential parameters
were optimized to match as closely as possible a training set
of forces generated from a SIESTA AIMD trajectory at
T ¼ 750 K. The cutoffs and the reference bond angles were
determined from the geometry of relaxed monolayer MoS2

structure predicted by SIESTA. The equilibrium bond lengths
and bond angles are prebuilt into the potential by applying

FIG. 6. The diagonal elements of the inverse FIM in logarithmic space. FIG. 7. The diagonal elements of the FIM.
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appropriate constraints to the potential parameters. In this
way, the relaxed structure of monolayer MoS2 is guaranteed
to have the correct geometry.

To test the accuracy of the fitted potential, it was used to
compute the lattice constants, cohesive energy versus lattice
constant curve, elastic constants, and in-plane linear thermal
expansion coefficient. Our validation tests show that:

1. The SW-FM potential correctly predicts the equilibrium
lattice constants, cohesive energy, and energy versus lat-
tice constant curves.

2. The elastic constant C11 is a bit underestimated compared
with the first principles predictions, but the overall predic-
tions for C11 and C12 are good.

3. The in-plane linear thermal expansion coefficient aL,
computed using both the direct method and the fluctuation
method, increases rapidly at low temperature and satu-
rates at high temperature in agreement with first principles
calculations and classical computations using the REBO
potential.

A Fisher information theory based sensitivity analysis
shows that all the potential parameters are well identified.
The potential is most sensitive to parameters associated with
two-body Mo-S interactions, and less sensitive to Mo-Mo
and S-S interactions. The analysis also provides an analytical
upper bound on the uncertainty in any phase average predic-
tions that the potential makes due to small changes in its
parameters. This is demonstrated by example for the mean
thickness of a MoS2 sheet at finite temperature. The change
in mean thickness computed by MD is found to be tightly
bound by the analytical expression. The Fisher information
theory based sensitivity analysis described in this paper is
general and can be applied to potentials for other materials as
long as the training set for the force-matching method is
obtained from a dynamical trajectory sampling a distribution.

For the properties computed in this work, we find that the
SW-FM potential outperforms the previous SW potentials for
MoS2

26,27 on which this work is based, and has comparable
accuracy to the REBO18 and ReaxFF29 reactive potentials.
Thanks to its simple functional form, MD simulations with
SW-FM are significantly faster than with REBO or ReaxFF.
We note that SW-FM is parameterized only for monolayer
MoS2 in the 2H phase, and thus should not be used for other
phases of MoS2 (e.g., bulk MoS2 or the monolayer 1T phase).

The SW-FM potential is archived in OpenKIM.51,76 It
can be used with any KIM compliant molecular simulation
code including LAMMPS,60,61 ASE,77–79 IMD,80,81

DL_POLY,82 and GULP.45,46 See Appendix C for details.
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APPENDIX A: FLUCTUATION METHOD TO COMPUTE
LTEC

The partition function for the isothermal-isobaric (NPT)
ensemble is83

QðN; p; TÞ ¼ C

ð1

0

dV

ð

C
dp dq e%bðHþpVÞ; (A1)

where C is a normalization constant, b ¼ 1=ðkBTÞ; kB is the
Boltzmann constant, H is the Hamiltonian, p is pressure, V is
volume, and the two integrations are over volume space and
phase space C. The macroscopic observable associated with
a phase function A can be obtained as

hAi ¼ C

Q

ð1

0

dV

ð

C
dp dq e%bðHþpVÞA

¼ CQ%1

ð

x
dx e%bðHþpVÞA; (A2)

where in the last equality, we have rewritten the integration
over volume space and phase space as

Ð
x for brevity.

Taking volume V as the phase function A, the derivative
of the observable hVi with respect to b is

@hVi
@b

$$$$
N;p

¼ @ðCQ%1Þ
@b

ð

x
dxe%bðHþpVÞVþCQ%1

@

ð

x
dx exp %bðHþ pVÞ½ *V

@b

¼%CQ%2 @Q

@b

ð

x
dxe%bðHþpVÞVþCQ%1

ð

x
dx
@ exp %bðHþ pVÞ½ *

@b
V

¼C2Q%2

ð

x
dxe%bðHþpVÞðHþ pVÞ

ð

x
dxe%bðHþpVÞV%CQ%1

ð

x
dxe%bðHþpVÞðHþ pVÞV

¼ CQ%1

ð

x
dxe%bðHþpVÞðHþ pVÞ

) *
CQ%1

ð

x
dxe%bðHþpVÞV

) *
%CQ%1

ð

x
dxe%bðHþpVÞðHVþ pV2Þ

¼ ðhHiþ hpViÞhVi% hHVi% hpV2i¼ hHihVi% hHViþ hpVihVi% hpV2i; (A3)

244301-9 Wen et al. J. Appl. Phys. 122, 244301 (2017)



where in the third equality, we used @Q=@b ¼ %C
Ð

xdx
e%bðHþpVÞðHþ pVÞ, and in the second to last equality, we
used (A2). The volumetric thermal expansion coefficient is

aV ¼
1

V

@V

@T

$$$$
N;p

¼ 1

hVi
@hVi
@b

$$$$
N;p

@b
@T
¼ %kBb2 1

hVi
@hVi
@b

$$$$
N;p

:

(A4)

At p¼ 0, plugging (A3) into (A4), we obtain

aV ¼ kBb2 1

hVi
hHVi% hHihVi½ *: (A5)

It is seen that the volumetric thermal expansion coefficient
aVis related to the covariance of the Hamiltonian H and the
volume V.

Next, we get the LTEC aL from aV. For a 2 D material
(e.g., MoS2), assume V ¼ hL2, where L is the in-place
dimension, and h is the out-of-place dimension independent
of L. Then, the LTEC aL is

aL ¼
1

L

@L

@T

$$$$
N;p

¼ V

h

! "%1=2
@L

@V

@V

@T

$$$$
N;p

¼ 1

2

1

V

@V

@T

$$$$
N;p

¼ 1

2
aV :

(A6)

APPENDIX B: SENSITIVITY ANALYSIS IN LOGARITHM
PARAMETER SPACE

Defining ~hi ¼ log hi, we have

@f=@~hi ¼ @f=@hi + @hi=@~hi ¼ hi@f=@hi: (B1)

The FIM in logarithm parameter space is

~Fijð~hÞ ¼
1

2kBTg
Eeq

@f ðr; hÞ
@~hi

+ @f ðr; hÞ
@~hj

" #

¼ hi
1

2kBTg
Eeq

@f ðr; hÞ
@hi

+ @f ðr; hÞ
@hj

" # !
hj ¼ hiFijhj;

(B2)

where in the second and third equality, we used (B1) and (9),
respectively.

For an unbiased estimator ĥ of the model parameters,
the Cram!er-Rao bound is expressed as

Covh ĥ
% &
- F%1ðhÞ: (B3)

Let D ¼ diagðhÞ be the diagonal matrix generated from vec-
tor h. Pre-multiplying both sides of (B3) by D%1 and post-
multiplying by D%T gives

D%1Covh ĥ
% &

D%T¼D%1E ðĥ%E ĥ
% &
Þðĥ%E ĥ

% &
ÞT

h i
D%T

¼E D%1ðĥ%E ĥ
% &
Þðĥ%E ĥ

% &
ÞTD%T

h i

¼E D%1ðĥ%E ĥ
% &
Þ

+ ,
D%1ðĥ%E ĥ

% &
Þ

+ ,T
) *

¼Covh D%1ĥ
% &

; (B4)

and

D%1F%1ðhÞD%T ¼ DTFðhÞD
- .%1 ¼ ~Fð~hÞ%1; (B5)

where we used (B2).
Because D is a non-negative matrix (i.e., each element of

D is non-negative), the inequality (B3) still holds when pre-
multiplied by D%1 and post-multiplied by D%T. Therefore

D%1Covh ĥ
% &

D%T - D%1F%1ðhÞD%T; (B6)

and using (B4) and (B5), we have

Covh D%1ĥ
% &

- ~Fð~hÞ%1: (B7)

The ith diagonal element of this inequality is

Varh ĥi=hi

h i
- ~F

%1
% &

ii: (B8)

APPENDIX C: USING THE OPEN KNOWLEDGEBASE
OF INTERATOMIC MODELS (OPENKIM)

The Open Knowledgebase of Interatomic Models
(OpenKIM) (https://openkim.org) is an open-source, publicly
accessible repository of classical interatomic potentials, as
well as their predictions for material properties that can be
visualized and compared with first-principles data. Interatomic
potentials stored in OpenKIM that are compatible with the
KIM application programming interface (API) are called
“KIM Models.” KIM Models will work seamlessly with a
variety of major simulation codes that are compatible with this
standard including LAMMPS,60,61 ASE,77–79 IMD,80,81

DL_POLY,82 and GULP.45,46

As an example, we describe how a KIM Model would
be used with LAMMPS. In LAMMPS, reactive interatomic
potentials are specified using the pair_style command.
LAMMPS has a “pair_style kim” option for using KIM
Models. To use KIM Models with LAMMPS, perform the
following steps:

1. Install the KIM API (see instructions at https://openkim.
org/kim-api/);

2. Download and install the desired potential from https://
openkim.org/ (see instructions that come with the API);

3. Enable KIM Models in LAMMPS by typing: “make
yes-kim” and then compiling LAMMPS.

In a LAMMPS input script, a KIM Model is then selected in
the same way as other LAMMPS potentials. For example,
the potential developed in this paper can be used with the
following two commands:
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pair style kim LAMMPSvirial Three Body Stillinger Weber MoS MO 201919462778 000

pair coeff ' ' Mo S

The advantage of releasing the potential as a KIM Model
(as opposed to just a file compatible with LAMMPS or
another code), is that the model will work with not just
LAMMPS, but other major codes as noted above. In addition,
a KIM Model has a “KIM ID” that can be cited in publica-
tions. The KIM ID provides a unique permanent link to the
archived content and includes a three-digit version number to
keep track of modifications. For example, a modification to
the model parameters would lead to a version upgrade (or a
new forked model if appropriate). Citing a KIM ID in a publi-
cation makes it possible for the reader to download the exact
potential used in the reported simulation and to reproduce the
results. The KIM ID for the model described in this paper
is “MO_201919462778_000” (the last three digits are the
version number).
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