
The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

The OpenKIM processing pipeline:
A cloud-based automatic material
property computation engine

Cite as: J. Chem. Phys. 153, 064104 (2020); doi: 10.1063/5.0014267
Submitted: 18 May 2020 • Accepted: 20 July 2020 •
Published Online: 10 August 2020

D. S. Karls,1 M. Bierbaum,2 A. A. Alemi,3 R. S. Elliott,1 J. P. Sethna,4 and E. B. Tadmor1,a)

AFFILIATIONS
1Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, Minnesota 55455, USA
2Department of Information Science, Cornell University, Ithaca, New York 14850, USA
3Google Research, Mountain View, California 94043, USA
4Department of Physics, Cornell University, Ithaca, New York 14850, USA

Note: This paper is part of the JCP Special Topic on Classical Molecular Dynamics (MD) Simulations: Codes, Algorithms,
Force Fields, and Applications.
a)Author to whom correspondence should be addressed: tadmor@umn.edu

ABSTRACT
The Open Knowledgebase of Interatomic Models (OpenKIM) is a framework intended to facilitate access to standardized implementations
of interatomic models for molecular simulations along with computational protocols to evaluate them. These protocols include tests to com-
pute material properties predicted by models and verification checks to assess their coding integrity. While housing this content in a unified,
publicly available environment constitutes a major step forward for the molecular modeling community, it further presents the opportunity
to understand the range of validity of interatomic models and their suitability for specific target applications. To this end, OpenKIM includes
a computational pipeline that runs tests and verification checks using all available interatomic models contained within the OpenKIM Repos-
itory at https://openkim.org. The OpenKIM Processing Pipeline is built on a set of Docker images hosted on distributed, heterogeneous
hardware and utilizes open-source software to automatically run test–model and verification check–model pairs and resolve dependencies
between them. The design philosophy and implementation choices made in the development of the pipeline are discussed as well as an
example of its application to interatomic model selection.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0014267., s

I. INTRODUCTION

As computational resources become more powerful, cheaper,
and more prevalent, the use of molecular simulations is becom-
ing increasingly prominent in the understanding and prediction of
material properties. The most accurate methods used in this domain
are first principles approaches based on a fully quantum mechan-
ical model of the potential energy surface, but these remain pro-
hibitively expensive for many problems of interest. Often, in order
to reduce computational complexity, approximate interatomicmod-
els (referred to as interatomic potentials or force fields) are devel-
oped that eschew the electronic degrees of freedom in favor of a
purely classical coarse-grained description of atomic interactions.

The predictive power of these simulations hinges delicately on a
number of factors including the form of the model and its param-
eters, the physical properties under scrutiny, and the simulation
method.

The development of new interatomic models is a daunting task
requiring a great deal of expertise and time. It is therefore common
for researchers to adopt models for their simulations developed by
other groups and published in the literature. This can be difficult in
practice, since in many cases the computer code used to generate
the published results is not available with the article and may not
even be archived by the authors themselves. Implementations of the
model may exist in simulation packages, but these are often unver-
ified with unreliable provenance and so may not be consistent with

J. Chem. Phys. 153, 064104 (2020); doi: 10.1063/5.0014267 153, 064104-1

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0014267
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0014267
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0014267&domain=pdf&date_stamp=2020-August-10
https://doi.org/10.1063/5.0014267
https://orcid.org/0000-0002-4069-396X
https://orcid.org/0000-0001-7147-9184
https://orcid.org/0000-0003-4988-8306
https://orcid.org/0000-0001-9126-0892
https://orcid.org/0000-0003-3311-6299
mailto:tadmor@umn.edu
https://openkim.org
https://doi.org/10.1063/5.0014267


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

the published work. This leaves other researchers to independently
implement and test interatomic models based on the description
found in the literature, adding greatly to the barrier to adoption.

The Open Knowledgebase of Interatomic Models (OpenKIM,
KIM)1,2 established in 2009 and funded through the U.S. National
Science Foundation aims to solve the scientific and practical
issues of material simulations that use interatomic models through
a comprehensive cyber infrastructure. OpenKIM is hosted at
https://openkim.org and includes a repository for storing computer
implementations of interatomic models, computational protocols to
evaluate them including tests to compute materials property pre-
dictions and verification checks to assess their coding integrity,
and first-principles and experimental results that serve as refer-
ence data for comparison. The computational protocols can be
standalone but are typically applied through an existing molecu-
lar simulation platform (“simulator”). The process necessary for
these computations to run with an interatomic model is man-
aged through a lightweight middleware library known as the KIM
Application Programming Interface (API).3 The KIM API formally
defines an abstract representation of the data and processing direc-
tives necessary to perform a molecular simulation, and provides a
programmatic cross-language implementation capable of efficiently
communicating them between models and simulators. Any inter-
atomic model code and simulator that conform to the KIM API
standard are thus capable of functioning together seamlessly; cur-
rently supported simulators include ASAP,4 ASE,5,6 DL_POLY,7
GULP,8 Large-scale Atomic/Molecular Massively Parallel Simula-
tor (LAMMPS),9 libatoms/QUIP,10 MDStressLab++,11,12 potfit,13–15
pyiron,16 and quasicontinuum (QC).17,18

The importance of archiving interatomic models has been rec-
ognized by others who have, in turn, established similar projects
including the NIST Interatomic Potentials Repository (IPR)19,20 and
Jarvis-FF.21,22 However, there are two significant differences between
these projects and OpenKIM. First, as alluded to above, an inter-
atomic model archived in OpenKIM is a software package that
includes all the code necessary to evaluate the model to obtain the
energy, forces, stresses and related values for a given atomic configu-
ration. This should be contrasted with repositories that only archive
model parameter files to be used with implementations in specific
molecular simulation codes. Archiving the model code is important,
not only because it allows the model to function as a self-contained
library that can be used in a portable fashion with many simula-
tors, but also because the implementation of a model is typically
complex, making it susceptible to programming errors and often
requiring optimization. This complexity gives rise to subtle effects
in some cases, e.g., the specifics of the splines comprising the func-
tional forms in a tabulated interatomic model have been shown to
affect its predictions for some properties.23 Maintaining this code
(and its history) is paramount in avoiding duplicated development
effort. A second major distinction, and the focal point of this work,
is that all of the models and computational protocols in OpenKIM
are paired with one another and executed in a completely auto-
mated manner via a distributed, cloud-based platform known as
the OpenKIM Processing Pipeline (hereafter, “the pipeline”). Mate-
rial property predictions computed in this fashion are inserted into a
publicly accessible database alongside corresponding first-principles
and experimental data, and aid in the analysis of individual mod-
els as well as the comparison of different models. These results are

available through a publicly accessible mongo database hosted at
https://query.openkim.org and a simplified query API through the
KIM-query python package24 and integrated within some simulators
such as LAMMPS.9

II. OVERVIEW

A. Content in KIM
Before turning attention to the pipeline itself, it is first necessary

to survey the various types of content in OpenKIM that pass through
it. (Note that below, the standard KIM terminology is indicated
using a san-serif font, e.g., Model refers to an interatomic model
in the OpenKIM system.) The following are items of the OpenKIM
content addressed by the pipeline:

• Model
An algorithm representing a specific interaction between
atoms, e.g., an interatomic potential or force field. There are
two primary types of Models: portable models, which can be
used with any KIM API-compliant simulation code, and simu-
lator models, which only work with a specific simulation code.
Portable models can either be standalone or parameterized.
Standalone models consist of both a parameter file and the cor-
responding source code that implements the functional form
of an interatomic model. Because the same source code is often
reused across multiple parameter sets, KIM also allows it to be
encapsulated in a Model Driver, and parameterized models
thus contain only parameter files and a reference to their driver.
Simulator models also contain only a parameter file but instead
of referencing a Model Driver, they include a set of com-
mands that invoke the implementation of a model found in a
particular simulator, e.g., LAMMPS.

• Test
A computer program that when coupled with a suitable Model,
possibly including additional input, calculates a specific predic-
tion (material property) for a particular configuration. Similar
to the case of models, the code that performs the computa-
tion can typically be reused with different parameter sets, e.g.,
a code that calculates the lattice constant of face-centered cubic
(fcc) Al could, with minor alterations, do the same for fcc Ni.
Accordingly, a Test can either be standalone in nature or con-
sist of a parameter file specifying the calculation that is read in
by a Test Driver. Each material property computed by a KIM
Test conforms to a property definition25 schema defined by the
Test developer for that property and archived in OpenKIM.
This makes it possible to automatically compare property pre-
dictions across different Models and with first-principles or
experimental reference data and enables dependencies between
Tests (see Sec. V).

• Verification Check
A computer program that when coupled with aModel exam-
ines a particular aspect of its coding correctness. This includes
checks for programming errors, failures to satisfy required
behaviors such as invariance principles, and determination of
general characteristics of the Model’s functional form such
as smoothness. For example, a Verification Check might

J. Chem. Phys. 153, 064104 (2020); doi: 10.1063/5.0014267 153, 064104-2

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://openkim.org
https://query.openkim.org


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

check whether the forces reported by a Model are consis-
tent with the energy it reports, i.e., whether the forces are the
negative derivatives of the energy.

All of the above items (including Model Drivers and Test
Drivers) are assigned a unique identifier (or “KIM ID”) in the
OpenKIM repository that includes a three-digit version extension
to record their evolution over time. Furthermore, each version
is assigned its own digital object identifier (DOI) for persistent
accessibility.

The objective of the pipeline is to automatically pair Tests
and Verification Checks with compatibleModels and execute
them. A Test and Model are compatible and can be executed if
(1) they are written for compatible versions of the KIM API, and
(2) if the atomic species involved in the calculation of the Test are
all supported by the Model. Verification Checks are designed
to work with any atomic species supported by the Model, and so
their compatibility is determined only based on criterion (1). The
material property instances generated by executing a specific Test–
Model pair are collectively referred to as a Test Result, while the
result generated by a Verification Check–Model pair is termed
a Verification Result. In either case, if a pair fails to successfully
generate a result, it produces an Error. The execution time required
to produce each Test Result, Verification Result, or Error is
collected and normalized with respect to a whetstone benchmark26
so as to give a hardware-independent estimation of the computing
resources that were consumed.

B. Pipeline architecture
All Models, Tests, and Verification Checks are submit-

ted to the OpenKIM repository through a web application (“Web
App”) that serves the openkim.org domain and interfaces with the
pipeline. Once a submitted item has completed an editorial review
process and been approved, a page is created for it that contains
metadata associated with the item and links to its source code. The
Web App proceeds to notify a separate Gateway machine of the
new item, which then retrieves the item and inserts it into a pub-
licly accessible database. Next, the Gateway sends a request to a third
machine termed the Director, whose purpose is to determine the set
of all current compatible items that it can be run with. For each

compatible match that it finds, the Director creates a job (a mes-
sage corresponding to a Test–Model or Verification Check–
Model pair that is to be run) that it communicates back to the
Gateway. Each job is claimed by one member of a fleet of Worker
machines that fetches the corresponding items from the Gateway
and executes it; once a given job is completed, its results are syn-
chronized back to the Gateway. After inserting the results into its
database, the Gateway returns them to theWeb App. A schematic of
these machines, the roles they play, and their connectivity is shown
in Fig. 1.

To make this concrete, consider a new Model for aluminum
(Al) [e.g., an embedded-atom method (EAM) potential27] is added
to the OpenKIM system. There are many Tests in the system
designed to work with Al models. One example is a test that com-
putes the cohesive energy (energy per atom) of Al in the face-
centered cubic (fcc) structure in its equilibrium configuration. The
Director will create a job coupling the Al fcc cohesive energy test
with the new EAM Al potential that will be queued by the Gate-
way. A worker will pick up this job and perform the computation.
The result will be the prediction of the new EAM potential for
the cohesive energy of fcc Al. This piece of information (encap-
sulated in a standard format explained below) will be returned to
the Gateway and from there passed on to the Web App for dis-
play on openkim.org. Similar calculations will be performed for
all Tests that compute Al properties. In addition, the new poten-
tial will be subjected to all Verification Checks. The specifics
of how such calculations are orchestrated in practice are described
in Sec. IV.

Drawing on best practices in API design,28 the guiding prin-
ciple of the pipeline architecture is encapsulation: the Web App,
Director, and Worker all have specific tasks to carry out on Mod-
els, Tests, and Verification Checks, while the primary focus
of the Gateway is to keep each of these elements isolated from one
another. This division of the pipeline into modular components
based on a clear separation of responsibilities is advantageous for
two reasons. First, it reaps all of the usual benefits that accompany
encapsulation. Only simple public interfaces are exposed by each
component, while private data and functions internal to them
remain protected from mutation or misuse. This enables changes of
arbitrary complexity to the private data structures and functions of

FIG. 1. Abstract architecture of the
pipeline and the responsibilities of each
component. Arrows indicate connectivity.

J. Chem. Phys. 153, 064104 (2020); doi: 10.1063/5.0014267 153, 064104-3

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://openkim.org/
http://openkim.org


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

a component, which may be necessary for bug fixes or to accommo-
date changes in software dependencies, without affecting the inter-
action with neighboring components. The result is comprehensible,
maintainable code that is practical to adapt in response to changing
design requirements. A secondary advantage of encapsulation is that
it naturally facilitates scalability. For example, horizontal scaling of
Workers or addition of Directors to accommodate increasing com-
putational demands is straightforward and can be done in a dynamic
fashion. High-Performance Computing (HPC) can be accommo-
dated by Workers geared to submission and retrieval of tasks from
HPC resources.

III. IMPLEMENTATION
The implementation of the conceptual architecture described

in Sec. II B is motivated by three main design objectives:

• Provenance—ability to track the origin of and recreate every
Test Result, Verification Result, and Error.

• Flexibility—ability to run on a wide range of hardware in dif-
ferent physical locations and scale with computational demand.

• Ease of development—minimization of initial and ongoing
development and maintenance costs.

The first two of these objectives are satisfied with the aid of virtu-
alization. While this could be accomplished using full-fledged vir-
tual machines, the pipeline is instead built upon a basis of Docker
images,29 which have several practical advantages in the pipeline
setting. Each individual component is provisioned and stored as
a version-controlled Docker image based on Linux from which a
container process is spawned that runs the component. The stack-
like structure of Docker images is designed to maximize reuse of
files, minimizing the amount of data that must be sent over the
network when deploying new images to the components. More
importantly, because the specific Docker image used to create a
component contains a complete specification of its environment,
each component and any task it performs is reproducible. In par-
ticular, the outcome of any job (Test Result or Verification
Result) can be reproduced based on the version of the Docker
image used to create the Worker container that ran it. Container-
izing the pipeline components using Docker also provides fluid
portability because containers can be run on nearly any modern
hardware.30 In the event that the components are run on shared
hardware, the process isolation of containers minimizes the risk of
interference.

The third objective in the pipeline implementation is ease of
development. Because there are various operations specific to the
OpenKIM framework and its contents that must be carried out, it is
necessary to develop and maintain custom software for the pipeline.
The Gateway, Director, andWorkers are all based on a single object-
oriented codebase written in Python that features classes for the
different types of KIM items (Models, Tests, etc.) as well as the
Gateway, Director, andWorkers themselves, that allow them to per-
form the tasks shown in Fig. 1. However, aside from this custom
software, widely-used packages and protocols are used to the max-
imum extent possible in order to lower the burden of development
and maintenance. The rsync31 utility is used to transfer the Models,
Model Drivers, Tests, Test Drivers, and Verification Checks between

the local repositories of KIM items on the Gateway, Director, and
Workers. Tornado32 is used to provide an authenticated web-based
HTTPS control API at pipeline.openkim.org accessible to the Web
App for submitting new items, as well as a web interface to the
public database run by the Gateway, which is implemented using
MongoDB,33 at query.openkim.org. The Director uses SQLite34 to
maintain an internal database for keeping track of jobs and depen-
dencies between them (to be discussed in Sec. V). Finally, Work-
ers include copies of the KIM API-compliant molecular simulation
codes mentioned in Sec. I.

The most critical external software packages leveraged in the
pipeline are those that connect all of its components: Celery35 and
RabbitMQ.36 Celery is an open-source distributed task queuing
framework written in Python. In this context, a task can be thought
of as an arbitrary function to be executed on some arguments. In the
case of the pipeline, the classes that define the Gateway, Director,
andWorkers each have a number of member functions that perform
somemanner of processing on KIM items. Those member functions
that must be invoked by other components of the pipeline are thus
registered as Celery tasks. Celery prompts the actual execution of
its registered tasks by way of message passing. On each component,
a Celery daemon is run that waits to receive a message requesting
that it execute a specific task with some arguments. For example, a
Celery daemon runs on each Worker that waits for a message ask-
ing it to execute a specific job. Such a message, which is created
by the Director, contains as its arguments the names of the spe-
cific Test or Verification Check andModel that are to be run
together.

Message passing in Celery is orchestrated by a message broker.
Althoughmultiple message brokers are available to be used with Cel-
ery, RabbitMQ was chosen for the pipeline because of its robustness
and extensive feature set. Written in Erlang, RabbitMQ implements
message passing using what is known as the advancedmessage queu-
ing protocol (AMQP).37 AMQP is a protocol that adheres to the
publisher–subscriber messaging pattern. Rather than sending mes-
sages directly from one component to another, they are placed in
extensible buffers called queues that are polled by subscribers that
acquire and process them. In fact, messages are not even sent directly
to queues, but rather to exchanges that can implement different logic
for routing messages to the queues that are bound to it. In the
pipeline, however, there is only a single exchange with three queues
bound to it: one to which the Gateway subscribes, one to which
the Director subscribes, and one to which all of the Workers sub-
scribe. The Gateway publishes messages to the Director queue when
it requests that it create jobs for a newly approved KIM item or when
a job has finished running, the Director publishes the jobs it creates
as messages in theWorker queue, and theWorkers publishmessages
to the Gateway queue as they finish executing jobs. All flow of con-
trol in the pipeline is conducted by RabbitMQ, while all execution is
handled by Celery.

IV. COMPUTATIONAL WORKFLOW
In order to gain a better understanding of the components of

the pipeline and their internals, consider the sequence of operations
that occur when a new Test is uploaded to OpenKIM and approved.
For the purposes of this example, suppose the newly approved Test,

J. Chem. Phys. 153, 064104 (2020); doi: 10.1063/5.0014267 153, 064104-4

Published under license by AIP Publishing

https://scitation.org/journal/jcp
http://pipeline.openkim.org
https://query.openkim.org


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 2. Internals of the pipeline compo-
nents and the communication between
them when a new item is submitted. See
Sec. IV for details. Note that when mul-
tiple Workers are running, they all read
to and write from the same queues, and
the broker ensures that each job is only
acquired by a single Worker.

T, computes the lattice constant of fcc Al and there is only a sin-
gle Model, M, for Al that exists in the OpenKIM repository. As
pictured in Fig. 2, the Web App begins the submission of T to the
pipeline by 1� notifying its Control API by sending anHTTP request
to pipeline.openkim.org.38 The pipeline control API responds by 2�
placing a message on the Gateway queue indicating a new item has
been submitted. The Celery daemon running on the Gateway polls
this queue and 3� acquires the message, causing it to 4� rsync the
item from the official OpenKIM repository on the Web App to its
own local repository. After 5� inserting the item into the public
database, the Gateway Celery daemon 6� places a message on the
Director queue to inform it of the new item. The Director Celery
daemon, polling the Director queue, 7� acquires this message and
rsyncs the item from the local repository of the Gateway to its own
local repository. Since the newly received itemwas a Test, the Direc-
tor proceeds to loop over allModels that might be compatible with
T. FindingM is compatible withT, the Director daemon creates a job
message for the pair T–M and 8� places it on theWorker queue. The
Worker daemon 9� acquires this message from the Worker queue
and subsequently executes the job. Once the job has finished run-
ning, the Worker announces so by 10� placing a corresponding mes-
sage on the Gateway queue. The Gateway daemon 11� acknowledges
this message and rsyncs the directory containing the output of the
job, which could be either a Test Result or Error, from the local
repository of the Worker to its own local repository. The Gateway
daemon then 12� rsyncs the job output directory from its local repos-
itory to the Web App to be placed in the OpenKIM repository and
displayed on openkim.org. Finally, the Gateway daemon 13� inserts
the Test Result or Error into the public-facing database where 14�
it can be accessed by the Query API hosted at query.openkim.org.
A similar process takes place when a newModel or Verification
Check is uploaded.

V. DEPENDENCIES
One subtlety not illustrated in the preceding example is that

Tests in OpenKIM are allowed to make use of Test Results com-
puted by other Tests. Indeed, this is encouraged whenever possi-
ble because creating Tests is typically complicated and they can
be expensive to run against even simple Models. Such dependen-
cies between Tests are made possible by the fact that all Test

Results (and Verification Results) contain, at a minimum, a
file that includes one or more property instances,39 numerical real-
izations of property definitions.25 Property definitions are intended
to embody all physical information necessary to define a mate-
rial property while ignoring any algorithmic or implementational
details related to how they are computed. Each contains a set of
keys that represent physical quantities that have a well-defined data
type and unit specification, and are either required to be reported
in each corresponding property instance or may optionally be sup-
plied. For example, the cohesive energy of a cubic crystal is defined
by four required keys: the lattice constant of the conventional unit
cell, basis atom coordinates, basis atom species, and the cohe-
sive energy itself. Optional keys include a human-readable name
for the crystal type and keys for a precise Wyckoff representation
of the crystal structure. By storing Test Results in an explicit,
machine-readable format in the public database of the pipeline,
other Tests can use them for their own purposes with appropri-
ately crafted queries. These queries can be done in several ways,
including simulator-native commands or the KIM-query python
package.24

The existence of dependencies between Tests places restric-
tions on the order in which jobs can be scheduled in the pipeline.
To manage this, each Test is required to provide a file that lists
which other Tests it depends on results from, which we refer to
as its upstream dependencies.40 Conversely, the set of Tests that rely
on the results of a given Test are termed its downstream dependents.
Altogether, this means that the collection of all Tests in OpenKIM
can be thought of as a directed acyclic graph. There are two mech-
anisms employed by the pipeline to traverse this structure as it exe-
cutes jobs, both of which are carried out by the Director: upstream
resolution and downstream resolution. Upstream resolution occurs
when a compatible Test–Model pair is first found. Before creating
a job for the pair, the Director inspects the dependency file of the
Test. If there are Test Results for each pairing of the Tests listed
with theModel in question, the job is placed on the Worker queue.
However, if any are missing, the Director performs upstream reso-
lution for those pairs. This continues recursively to identify the set
of all unique Test–Model pairs that are indirect upstream depen-
dencies of the original Test–Model pair and whose own upstream
dependencies are all satisfied. Finally, jobs are created for each pair in
this list and placed on the Worker queue. Once the Gateway notifies

J. Chem. Phys. 153, 064104 (2020); doi: 10.1063/5.0014267 153, 064104-5

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://pipeline.openkim.org/
https://openkim.org/
http://query.openkim.org/


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

the Director of a newly generated Test Result, downstream reso-
lution is carried out. The Director first reads the Test and Model
used to generate the Test Result from the message placed on its
queue by the Gateway. It then searches its internal database for any
Tests that are downstream dependents of the Test indicated in the
Test Result message. Any downstream dependents that have any
of the others as an upstream dependency are discarded before pro-
ceeding.41 Each remaining downstream dependent is coupled with
the Model and upstream resolution is performed on each pair in
order to arrive at a unique list of Test–Model pairs to run. Once
all of the downstream dependents have been iterated over, jobs are
queued for all pairs in the list.

An explicit example is shown in Fig. 3. Suppose there exist sev-
eral Tests that calculate properties of fcc Al at zero temperature: one
that computes the lattice constant (TLC), one that computes the elas-
tic constants (TEC), and one that computes the stress field surround-
ing a monovacancy using a linear elastic model (TV). The elastic
constants Test has the lattice constant Test as its upstream depen-
dency, whereas the vacancy Test has both the elastic constants and
lattice constants Tests as its upstream dependencies. Next, assume
that a new Model M for Al has been uploaded to the OpenKIM
Repository.When the Director is notified of the newmodel, it begins
looping over all current Tests to determine which of them are com-
patible with themodel. For the purposes of this example, assume that
the first Test the Director visits is TV. The first phase of dependency
resolution is shown in Fig. 3(a) (the circled numbers below refer to
dependency resolution steps in the figure). After determining it is
a compatible match with M, the Director begins iterating over its
upstream dependencies to see if they are satisfied. In the case of a
Test with multiple dependencies, the order in which it lists them in
its dependency file is arbitrary. Supposing that TEC is listed first, the
Director attempts to match it with M and performs upstream reso-
lution on this pair 1�. Although it is found to be compatible, 2� the
Director finds that the upstream dependency of TEC, TLC, has not
yet been run againstM. Recursing once more, the Director matches
TLC with theM and performs upstream resolution on the pair. This
time, since TLC has no upstream dependencies, it is determined that
the pair is ready to run and it is passed back down to the original
upstream resolution that was started at TV to be added to the run
list. Having looped over TEC during the original upstream resolu-
tion, 3� the Director attempts upstream resolution on TV’s other
dependency, TLC. Although it finds that TLC is ready to run against

M, the pair is already found in the run list, and so it is ignored.
Having completed the upstream resolution from TV, 4� a job is cre-
ated for the pair TLC–M and pushed to the Worker queue. The next
phase of dependency resolution is shown in Fig. 3(b). Assuming the
job produces a Test Result (rather than an Error), 5� the Direc-
tor is notified and begins downstream resolution for TLC. Observing
that TEC is an upstream dependency of TV, the latter is discarded
from consideration, leaving only downstream resolution to TEC. 6�
Upstream resolution on the pair TEC–M confirms that TLC has been
run and that there are no other upstream dependencies, and so 7� a
job for the pair is created and queued. The final phase of dependency
resolution is shown in Fig. 3(c). Once the Test Result correspond-
ing to TEC–M is returned to the Director, 8� downstream resolution
leads the Director to TEC’s one downstream dependent TV. Now,
9� and 10� upstream resolution of TV–M indicates that all of its
upstream dependencies are met and 11� it is run.

VI. APPLICATION TO MODEL SELECTION
A practical application of the data produced by the OpenKIM

pipeline is the selection of an interatomic model for a specific target
application. To aid in this process, the “KIM Compare” tool42 aggre-
gates Test Results for a set of properties of interest for a range
of Models and displays them to the user in the form of dynamic
tables and graphs. The first step is to identify a set of Nprops prop-
erties deemed important for a model to reproduce accurately for
the fidelity of the target application, and for which first principles
or experimental reference data are available. The absolute relative
error between the model prediction and the reference data for each
property is defined as

eMp ∶= �V
M
p − Rp

Rp
�, (1)

where VM
p is the prediction of model M for property p and Rp is a

reference value. In order to compare betweenmodels, a cost function
is defined as a weighted sum (with weights wp > 0) over the relative
errors, so that for modelM the error cost is

ζM ∶= ∑
Nprops
p=1 wpeMp

∑Nprops
p=1 wp

. (2)

FIG. 3. Example of dependency resolu-
tion when a new Model is uploaded to the
processing pipeline. Black arrows indi-
cate upstream dependencies while blue
and red arrows represent upstream and
downstream resolution, respectively. (a)
Upstream resolution begins from TV–M
and leads to TLC–M being run. (b) Down-
stream resolution begins from TLC–M
and leads to TEC–M being run. (c) Down-
stream resolution begins from TEC–M
and leads to TV–M being run.

J. Chem. Phys. 153, 064104 (2020); doi: 10.1063/5.0014267 153, 064104-6

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

The lower the cost ζM the more accurate the model is overall. The
weights in Eq. (2) are selected based on domain expertise and intu-
ition regarding the relative importance of the properties for the tar-
get application. An area of active research in OpenKIM is to develop
more rigorous methods for identifying properties of importance and
associated weights for an arbitrary target application.43

In addition to accuracy, computational cost is also an important
consideration when selecting a model. As a measure of the speed
of a model, its average execution time over all Nprops properties is
computed. For modelM, this is

t̄M ∶= 1
Nprops

Nprops�
p=1 tMp , (3)

where tMp is the execution time for computing property p with
model M normalized by the whetstone benchmark (see Sec. II).
By using normalized time, computations performed on Work-
ers running on different architectures are considered on equal
footing.

A model can be selected from a pool of available candidates
by examining the results from Eqs. (2) and (3) on a cost vs time
plot generated by the KIM Compare tool. A recent real-world exam-
ple of usage of this tool was the selection of a copper (Cu) model
for a large-scale molecular dynamics (MD) simulation of crystal
plasticity at Lawrence Livermore National Laboratory (LLNL).44–46
The objective was to find a model that was as inexpensive as pos-
sible in order to maximize the size of the simulation while still
being sufficiently accurate for the material properties being stud-
ied. Crystal plasticity in fcc crystals is governed by dislocation
nucleation and interaction. Key properties for obtaining correct
behavior include the elastic constants that govern the long–range
interaction between dislocations, the intrinsic stacking fault energy
that governs the splitting distance in dissociated dislocation cores,
and basic crystal properties including the equilibrium lattice con-
stant and cohesive energy. In addition, it is important that the
likelihood of dislocation nucleation relative to competing mech-
anisms such as deformation twinning or brittle fracture is cap-
tured. This is governed by the unstable stacking energy,47 unsta-
ble twinning energy,48 and surface energies of potential cleavage
planes.

The cost vs computation time for 30 EAM and Finnis–Sinclair
(FS) potentials archived in OpenKIM for many of the afore-
mentioned properties is shown in Fig. 4 (see the supplementary
material). These properties were calculated at zero temperature,
although a better estimate of a given model’s accuracy could be
gained by examining the values of these properties at a temper-
ature closer to that of the target application. Only EAM and FS
potentials were considered since they are known to provide accept-
able accuracy for fcc metals and are significantly less expensive
than more accurate options. The differences in computation time
between the models is related to details such as the employed cut-
off radius, functional forms, and in the case of tabulated functions,
the number of data points. Based on these results, model “P” by
Mishin et al.49–51 was selected by the LLNL researchers because
it provided a good compromise in terms of relative speed and
accuracy.

FIG. 4. Cost function ζM defined in Eq. (2) vs the average computation time in
Eq. (3), given in units of Tera-Whetstone Instructions (TWI), for 30 EAM and
FS potentials for Cu archived in OpenKIM and 13 material properties of fcc Cu.
Monospecies models (blue) display similar accuracy to multispecies models (red),
but are typically computationally less expensive. See the supplementary material
for a definition of the model labels.

VII. CONCLUSIONS AND FUTURE WORK
The OpenKIM Pipeline is a distributed infrastructure to

orchestrate the computation of compatible Models, Tests, and
Verification Checks in the OpenKIM repository. This infras-
tructure is divided into different encapsulated components based
on a clear separation of responsibilities. Each component is imple-
mented as a Docker container, providing reproducibility of their
environment and the tasks they perform, as well as portability
across heterogeneous hardware. Moreover, common software pack-
ages and protocols are leveraged not only in the majority of the
individual components but also in the networking that allows them
to communicate with one another. Altogether, the design choices
support the project-wide goals of provenance, flexibility, and ease
of development. The results from the calculations performed by
the pipeline are archived at openkim.org and are used by the
KIM Compare tool to help users select models for applications
of interest.

Further work is needed to implement a more sophisticated
algorithm for job scheduling that excludes the possibility of jobs
being rerun unnecessarily in the case of pathological dependency
structures. Support must also be added for jobs that require HPC
resources, including those external to the pipeline itself. This
may entail a revision of the containerization approach so that a
Docker image is created for each individual job.52 It also brings
forward the need for a job prioritization system, which might
take into account profiling information for jobs previously run
for each Test in order to predict the computational demand
of future jobs. Vertical scaling of the individual components of
the pipeline is becoming increasingly important to accommodate
increased community uptake. In addition, growth in the size of
the OpenKIM repository highlights the need for automated hor-
izontal scaling based on work load. Finally, the development of
intelligent tools for model comparison and selection that can assist
users in this process remains a challenging and important area for
continuing work.

J. Chem. Phys. 153, 064104 (2020); doi: 10.1063/5.0014267 153, 064104-7

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0014267%23suppl
https://doi.org/10.1063/5.0014267%23suppl
https://doi.org/10.1063/5.0014267%23suppl
http://openkim.org


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

SUPPLEMENTARY MATERIAL

A spreadsheet containing the full listing of the material proper-
ties, models, and reference data used to construct Fig. 4 is provided
as the supplementary material. The weights used in computing the
cost function ζ in Eq. (2) can be manipulated in the spreadsheet to
see how this affects model selection.

ACKNOWLEDGMENTS
This research was partly supported by the National Science

Foundation (NSF) under Grant Nos. DMR-1834251 and DMR-
1834332. The authors acknowledge the Minnesota Supercomput-
ing Institute (MSI) at the University of Minnesota for providing
resources that contributed to the results reported in this paper. The
authors thank Ronald Miller, Noam Bernstein, Mingjian Wen, and
Yaser Afshar for helpful discussions and for contributing to this
effort.

DATA AVAILABILITY

The data that support the findings of this study are available
within the article and its supplementary material.

REFERENCES
1E. B. Tadmor, R. S. Elliott, J. P. Sethna, R. E. Miller, and C. A. Becker, JOM 63,
17 (2011).
2E. B. Tadmor, R. S. Elliott, S. R. Phillpot, and S. B. Sinnott, COSSMS 17, 298
(2013).
3R. S. Elliott and E. B. Tadmor, “Knowledgebase of interatomic mod-
els (KIM) application programming interface (API)” (OpenKIM, 2011)
https://doi.org/10.25950/ff8f563a.
4See https://wiki.fysik.dtu.dk/asap for Asap—As Soon As Possible.
5A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli, R. Christensen,
M. Dułak, J. Friis, M. N. Groves, B. Hammer, C. Hargus, E. D. Hermes, P. C.
Jennings, P. B. Jensen, J. Kermode, J. R. Kitchin, E. L. Kolsbjerg, J. Kubal,
K. Kaasbjerg, S. Lysgaard, J. B. Maronsson, T. Maxson, T. Olsen, L. Pastewka,
A. Peterson, C. Rostgaard, J. Schiøtz, O. Schütt, M. Strange, K. S. Thygesen,
T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng, and K. W. Jacobsen, J. Phys.:
Condens. Matter 29, 273002 (2017).
6S. R. Bahn and K. W. Jacobsen, Comput. Sci. Eng. 4, 56 (2002).
7I. T. Todorov,W. Smith, K. Trachenko, andM. T. Dove, J. Mater. Chem. 16, 1911
(2006).
8J. D. Gale, J. Chem. Soc., Faraday Trans. 93, 629 (1997).
9S. Plimpton, J. Comput. Phys. 117, 1 (1995).
10A. P. Bartók et al., “LibAtoms+QUIP: A software library for carrying out
molecular dynamics simulations,” http://www.libatoms.org/.
11N. C. Admal and E. B. Tadmor, J. Elasticity 100, 63 (2010).
12N. C. Admal and E. B. Tadmor, J. Chem. Phys. 134, 184106 (2011).
13P. Brommer and F. Gähler, Philos. Mag. 86, 753 (2006).
14P. Brommer and F. Gähler, Modell. Simul. Mater. Sci. Eng. 15, 295 (2007).
15P. Brommer, A. Kiselev, D. Schopf, P. Beck, J. Roth, and H.-R. Trebin, Modell.
Simul. Mater. Sci. Eng. 23, 074002 (2015).
16J. Janssen, S. Surendralal, Y. Lysogorskiy, M. Todorova, T. Hickel, R. Drautz,
and J. Neugebauer, Comput. Mater. Sci. 163, 24 (2019).
17E. B. Tadmor, M. Ortiz, and R. Phillips, Philos. Mag. A 73, 1529 (1996).
18E. B. Tadmor, F. Legoll, W. K. Kim, L. M. Dupuy, and R. E. Miller, Appl. Mech.
Rev. 65, 010803 (2013).
19C. A. Becker, F. Tavazza, Z. T. Trautt, and R. A. Buarque de Macedo, Curr.
Opin. Solid State Mater. Sci. 17, 277 (2013), frontiers in Methods for Materials
Simulations.

20L. M. Hale, Z. T. Trautt, and C. A. Becker, Modell. Simul. Mater. Sci. Eng. 26,
055003 (2018).
21K. Choudhary, F. Y. P. Congo, T. Liang, C. Becker, R. G. Hennig, and F. Tavazza,
Sci. Data 4, 160125 (2017).
22K. Choudhary, A. J. Biacchi, S. Ghosh, L. Hale, A. R. H. Walker, and F. Tavazza,
J. Phys.: Condens. Matter 30, 395901 (2018).
23M. Wen, S. M. Whalen, R. S. Elliott, and E. B. Tadmor, Modell. Simul. Mater.
Sci. Eng. 23, 074008 (2015).
24D. S. Karls, https://github.com/openkim/kim-query.
25E. B. Tadmor, R. S. Elliott, and D. S. Karls, https://openkim/properties.
26H. J. Curnow and B. A. Wichmann, Comput. J. 19, 43 (1976), https://academic.
oup.com/comjnl/article-pdf/19/1/43/1057793/190043.pdf.
27M. S. Daw, S. M. Foiles, and M. I. Baskes, Mater. Sci. Rep. 9, 251
(1993).
28M. Reddy, API Design for C++, 1st ed. (Morgan Kaufmann, Burlington, MA,
2011).
29D. Merkel, Linux J. 2014, see https://www.linuxjournal.com/content/docker-
lightweight-linux-containers-consistent-development-and-deployment.
30For HPC environments, Singularity images can be constructed from Docker
images.
31See https://rsync.samba.org for more information on the “rsync” file synchro-
nization utility.
32See https://www.tornadoweb.org for more information on the Tornado web
server.
33See https://www.mongodb.com for more information on the MongoDB
database application.
34See https://www.sqlite.org for more information on the SQLite database appli-
cation.
35A. Solem et al., “Celery distributed task queue,” www.celeryproject.org.
36See https://www.rabbitmq.com for more information on the RabbitMQ mes-
sage broker.
37Currently, RabbitMQ features native support only for AMQP version 0.9.1,
employed here.
38There are only two parts of the process shown in Fig. 2 that the Web App
is aware of: (1) that a new item has been submitted, at which point it noti-
fies the Gateway’s control API in step 1; (2) it periodically checks to see if new
results or errors have been uploaded by the Gateway by scanning the contents of
some of its directories. This loose coupling obviates the need to deal with syn-
chronization between the Web App and the Gateway that would otherwise be
necessary.
39Note that the KIM-property python package (https://github.com/openkim/kim-
property) can be used to create and write property instances. A native implemen-
tation in LAMMPS is also available.
40Strictly speaking, what is listed are lineages of Tests, which encompass all ver-
sions of that Test. The dependency is always taken to correspond to the latest
existing version in that lineage.
41This is applicable in the event where a new version of an existing Test
is uploaded, which forces its downstream dependents to be rerun. The rea-
son is that jobs associated with the downstream dependents being removed
from the list could otherwise eventually be run twice when downstream res-
olution is performed on the Test Results of jobs associated with the oth-
ers. However, this mechanism can fail if more complicated structures exist
in the dependency graph. A point of future work is to address this short-
coming with a global graph traversal method, e.g. a topological sorting algo-
rithm, while taking care not to needlessly sequentialize jobs in independent
branches.
42See https://openkim.org/compare for to use the model comparison tool.
43D. S. Karls, “Transferability of empirical potentials and the knowledgebase of
interatomic models,” Ph.D. thesis, University of Minnesota, Minneapolis, MN,
USA, 2016.
44V. V. Bulatov, private communication (2020).
45L. A. Zepeda-Ruiz, A. Stukowski, T. Oppelstrup, N. Bertin, N. R. Barton,
R. Freitas, and V. V. Bulatov, “Metal hardening in atomistic detail,”
arXiv:1909.02030 [cond-mat.mtrl-sci] (2019).

J. Chem. Phys. 153, 064104 (2020); doi: 10.1063/5.0014267 153, 064104-8

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0014267%23suppl
https://doi.org/10.1063/5.0014267%23suppl
https://doi.org/10.1007/s11837-011-0102-6
https://doi.org/10.1016/j.cossms.2013.10.004
https://doi.org/10.25950/ff8f563a
https://wiki.fysik.dtu.dk/asap
https://doi.org/10.1088/1361-648x/aa680e
https://doi.org/10.1088/1361-648x/aa680e
https://doi.org/10.1109/5992.998641
https://doi.org/10.1039/b517931a
https://doi.org/10.1039/a606455h
https://doi.org/10.1006/jcph.1995.1039
http://www.libatoms.org/
https://doi.org/10.1007/s10659-010-9249-6
https://doi.org/10.1063/1.3582905
https://doi.org/10.1080/14786430500333349
https://doi.org/10.1088/0965-0393/15/3/008
https://doi.org/10.1088/0965-0393/23/7/074002
https://doi.org/10.1088/0965-0393/23/7/074002
https://doi.org/10.1016/j.commatsci.2018.07.043
https://doi.org/10.1080/01418619608243000
https://doi.org/10.1115/1.4023013
https://doi.org/10.1115/1.4023013
https://doi.org/10.1016/j.cossms.2013.10.001
https://doi.org/10.1016/j.cossms.2013.10.001
https://doi.org/10.1088/1361-651x/aabc05
https://doi.org/10.1038/sdata.2016.125
https://doi.org/10.1088/1361-648x/aadaff
https://doi.org/10.1088/0965-0393/23/7/074008
https://doi.org/10.1088/0965-0393/23/7/074008
https://github.com/openkim/kim-query
https://openkim/properties
https://doi.org/10.1093/comjnl/19.1.43
https://academic.oup.com/comjnl/article-pdf/19/1/43/1057793/190043.pdf
https://academic.oup.com/comjnl/article-pdf/19/1/43/1057793/190043.pdf
https://doi.org/10.1016/0920-2307(93)90001-u
https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment
https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment
https://rsync.samba.org
https://www.tornadoweb.org
https://www.mongodb.com
https://www.sqlite.org
http://www.celeryproject.org
https://www.rabbitmq.com
https://github.com/openkim/kim-property
https://github.com/openkim/kim-property
https://openkim.org/compare
http://arxiv.org/abs/1909.02030


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

46L. A. Zepeda-Ruiz, A. Stukowski, T. Oppelstrup, and V. V. Bulatov, Nature 550,
492 (2017).
47J. R. Rice, G. E. Beltz, and Y. Sun, J. Mech. Phys. Solids 40, 239
(1992).
48E. B. Tadmor and S. Hai, J. Mech. Phys. Solids 51, 765 (2003).
49Y. Mishin, “EAM potential (LAMMPS cubic hermite tabulation) for Cu
developed by Mishin, Mehl, and Papaconstantopoulos (2001) v005,” OpenKIM,
https://doi.org/10.25950/bbcadadf (2018).

50R. S. Elliott, “EAM model driver for tabulated potentials with cubic Her-
mite spline interpolation as used in LAMMPS v005,” OpenKIM, https://doi.org/
10.25950/bbcadadf (2018).
51Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, and J. D. Kress,
Phys. Rev. B 63, 224106 (2001).
52K. M. D. Sweeney and D. Thain, in Proceedings of the 9thWorkshop on Scientific
Cloud Computing, ScienceCloud’18 (Association for Computing Machinery, New
York, NY, USA, 2018).

J. Chem. Phys. 153, 064104 (2020); doi: 10.1063/5.0014267 153, 064104-9

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1038/nature23472
https://doi.org/10.1016/s0022-5096(05)80012-2
https://doi.org/10.1016/s0022-5096(03)00005-x
https://doi.org/10.25950/bbcadadf
https://doi.org/10.25950/bbcadadf
https://doi.org/10.25950/bbcadadf
https://doi.org/10.1103/physrevb.63.224106

