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Uncertainty quantification in molecular simulations with
dropout neural network potentials
Mingjian Wen1 and Ellad B. Tadmor 1✉

Machine learning interatomic potentials (IPs) can provide accuracy close to that of first-principles methods, such as density
functional theory (DFT), at a fraction of the computational cost. This greatly extends the scope of accurate molecular simulations,
providing opportunities for quantitative design of materials and devices on scales hitherto unreachable by DFT methods. However,
machine learning IPs have a basic limitation in that they lack a physical model for the phenomena being predicted and therefore
have unknown accuracy when extrapolating outside their training set. In this paper, we propose a class of Dropout Uncertainty
Neural Network (DUNN) potentials that provide rigorous uncertainty estimates that can be understood from both Bayesian and
frequentist statistics perspectives. As an example, we develop a DUNN potential for carbon and show how it can be used to predict
uncertainty for static and dynamical properties, including stress and phonon dispersion in graphene. We demonstrate two
approaches to propagate uncertainty in the potential energy and atomic forces to predicted properties. In addition, we show that
DUNN uncertainty estimates can be used to detect configurations outside the training set, and in some cases, can serve as a
predictor for the accuracy of a calculation.
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INTRODUCTION
Molecular simulation methods are powerful computational tools
for exploring material behavior on nano- and microscopic scales,
which can be difficult to investigate experimentally1,2. Such
methods are employed widely to study a range of diverse
behaviors, such as phase transformations in crystals3, chemical
reaction processes in combustion4, and protein folding5, to name
a few. At the core of any molecular simulation lies a description of
the interactions between atoms that produce the forces govern-
ing atomic motion. In classical molecular simulations, these
interactions are modeled using an interatomic potential (IP). An
IP is a functional form motivated by physics or a machine learning
procedure, which takes as input the positions and species of the
atoms, and outputs the energy and forces on the atoms. The IP
includes parameters that are calibrated to best reproduce a
training set of first-principles and/or experimental properties. IPs
are computationally far less intensive than first-principles meth-
ods, such as density functional theory (DFT), and thus can be used
for molecular simulations that are beyond the scope of quantum
calculations6.
A challenge with using IPs is that since they are only

approximate models to the true bonding physics of the molecular
system, their predictions are associated with uncertainties that can
be difficult to quantify7. Uncertainties can be divided into three
categories: (1) numerical uncertainty, (2) structural uncertainty,
and (3) parametric uncertainty1,2,7. Numerical uncertainty is
related to the particular computational setup being employed in
a molecular simulation and includes details of the solution
algorithm, the size of the integration time step, the size of the
simulation box, the duration of the simulation when sampling a
statistical property, and so forth. These aspects of uncertainty are
well understood and can be addressed using existing techniques.
More challenging are structural and parametric uncertainties that
are related to the fidelity of the IP itself. Structural uncertainty
originates from approximations inherent in the functional form of

the IP, and parametric uncertainty is related to the precision with
which the IP parameters are known.
Uncertainty is particularly important for a new class of machine

learning IPs8–15 that has been gaining popularity in recent years. In
these models, general-purpose functions often containing large
numbers of parameters are trained against a large amount of DFT
data. Such models typically have very low transferability (i.e., an
ability to accurately describe configurations not included in their
training set) due to the lack of a physical model, but can have
accuracy close to that of DFT at a fraction of the computational
cost when evaluated for configurations within range of their
training set. Thus, machine learning IPs are good for interpolating
within a training set, but not for extrapolating beyond it. This is
their Achilles heel. To prevent the possibility of unbounded errors,
it is vital to develop effective and efficient approaches for
assessing structural and parametric uncertainty. In addition,
machine learning IPs are typically fit to a large dataset, which
requires substantial computational resources to obtain. Active
learning with IP uncertainty as the query strategy can help to
select the training set more wisely on the fly.
A variety of methods have been proposed for assessing uncertainty

in machine learning IPs. Several approaches are based on the idea of
using an ensemble of IPs. A quantity of interest (QOI) is computed
separately using each member of the ensemble and the spread in
these predictions provides an estimate of uncertainty. The methods
differ in how they construct the ensemble: (1) a single IP form is fit to
partial datasets drawn at random from the full training set (i.e., training
set subsampling)16–18; (2) different IP forms are constructed and fit to
the same training set19,20; and (3) the same IP form is fit to the same
training set, but using different initial values of IP parameters21,22.
Another class of uncertainty estimation methods relies on a measure of
the distance between an evaluated configuration and the training set.
Different approaches are used to define the distance metric, such as (1)
the D-optimality criterion23, (2) atom fingerprints distance in feature
space24, and (3) configuration distance in latent space25.
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The methods described above constitute important steps
towards uncertainty quantification for machine learning IPs, but
they have certain limitations that impact their utility. Overall these
approaches provide ad hoc uncertainty estimates lacking a
theoretical foundation. It is therefore difficult to interpret their
results or determine their domain of applicability. In addition, the
ensemble and distance-based approaches have specific limita-
tions. Ensemble methods require a large number of IPs to obtain
good statistics. This makes them expensive to train, especially
during iterative retraining in active learning25. Another serious
issue with ensemble methods is that the predicted uncertainty
can approach zero for configurations that are very far from the
training set26. For methods reliant on measures of distance, a
problem is that the predicted uncertainty is dependent on the
particular metric selected and may not translate well to
configurations of different size.
In this paper, we propose a rigorous approach for assessing

uncertainty in a class of machine learning IPs called neural
network (NN) potentials8,27. We combine this approach together
with a dropout regularization technique28,29 developed to prevent
overfitting in NN models. The key to our approach is a recent work
by Gal and Ghahraman30,31 showing that dropout NNs can provide
a meaningful Bayesian estimate of uncertainty. By adopting this
interpretation, we develop a Dropout Uncertainty Neural Network
(DUNN) potential for which an estimate of the structural and
parametric uncertainty associated with a prediction can be
obtained. In addition to rigor, the proposed approach has the
advantage that training a DUNN potential is significantly faster
than training an ensemble of IPs. We also propose a rapid method
for propagating uncertainty through a simulation that is
significantly faster than the ensemble sampling approach. We
begin with a derivation of the DUNN formalism and then
demonstrate how it can be used to assess uncertainty for a
model trained to represent condensed matter carbon.

RESULTS
DUNN Potentials
In an NN potential, the energy of a configuration of N atoms is
decomposed into the contributions of individual atoms,

E ¼
XN
α¼1

Eα; (1)

where Eα, the energy of atom α, is a function of its local atomic
environment through an NN as shown in Fig. 1. In a fully
connected NN, each node is connected to all the nodes in the
previous layer and the next layer (except for the input and output
layers). The value of node j in layer i is

yji ¼ h
X
k

yki�1w
k;j
i þ bji

 !
; (2)

where wk;j
i is the weight that connects node k in layer i − 1 and

node j in layer i, bji is the bias applied to node j of layer i, and h() is
a nonlinear activation function (e.g., a sigmoid or a hyperbolic
tangent function). Equation (2) can be written more compactly in
matrix form as yi = h(yi− 1Wi + bi), where yi is a row matrix of the
nodal values of layer i, Wi is a weight matrix, and bi is a row matrix
of the biases. Consequently, the energy Eα represented in Fig. 1
can be expressed as the following composition:

Eα ¼ h½h½y0W1 þ b1�W2 þ b2�W3 þ b3: (3)

IPs must be invariant with respect to rigid-body translation and
rotation, inversion of space, and permutation of chemically
equivalent atoms6. To achieve this, the local atomic environment
rlocal of an atom, consisting of the relative positions of its
neighboring atoms up to a prescribed cutoff radius rcut, is
transformed to the input layer y0 through a set of Ndesc descriptors
gj that identically satisfy the symmetry requirements:

yj0 ¼ gjðrlocalÞ; j ¼ 1; ¼ ;Ndesc: (4)

Various types of descriptors have been put forward for molecular
systems10,11 and crystalline materials13,27,32. For the carbon system
considered in this paper, we use the symmetry functions
proposed by Behler27 (see Supplementary Note 1 for details). An
important point is that for most machine learning IPs, calculating
the descriptors is the most expensive part of the computation.
An NN potential is typically trained against a large dense

dataset of relevant configurations computed using DFT. This can
include various ideal and defected bulk structures, lower
dimensional structures, molecules, and so on. For each configura-
tion, the DFT dataset can include the total energy, forces on the
atoms, and other properties such as elastic constants and stresses
amenable to first-principles calculations. The NN training set (X, Y)
is built from the DFT dataset. Each configuration in the DFT
dataset corresponds to a data point (x, y) in the training set, where
x are the set of individual atom descriptors for all atoms in the

Fig. 1 Schematic representation of a neural network for computing the energy of an atom. The neural network (NN) consists of an input
layer, two hidden layers, and an output layer. The atomic environment (i.e., configuration of atoms surrounding atom α within a cutoff
distance rcut) is transformed into the input layer, yj0 (j = 1, 2, …), through a set of descriptors. Each arrow connecting two nodes in adjacent
layers represents a weight w. The energy Eα of atom α is obtained as the output of the NN. A fully connected NN becomes a dropout NN when
some connections are eliminated (e.g., by removing the dashed arrows in the figure).
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configuration that will serve as the input to the NN, and y are the
corresponding properties computed for the configuration (energy,
forces, etc.). Note that the size of the training set (X, Y) is equal to
the number of configurations in the DFT dataset, but for each data
point in the training set, the size of the input x and output y (if it
contains forces) is proportional to the number of atoms in the
corresponding configuration. For each configuration, the total
energy is computed as the sum of the outputs of the NN (atomic
energy Eα) by supplying individual atom descriptors to the NN.
Other properties that follow can be computed as functions of the
total energy and its derivatives (e.g., the force on an atom is the
negative gradient of the total energy with respect to its position).
A dropout NN28,29 is obtained from a fully connected NN by

randomly eliminating all outgoing connections from some of the
nodes in each layer (e.g., the dashed arrows in Fig. 1). The
fraction of nodes dropped on average in each layer is called
the dropout ratio. Mathematically, Eq. (3) can be reformulated for
a dropout NN as

Eα ¼ h½h½y0ðD1W1Þ þ b1�ðD2W2Þ þ b2�ðD3W3Þ þ b3; (5)

where a dropout matrix Di is a square diagonal binary matrix of
integers 0 or 1. The diagonal elements of Di follow a Bernoulli
distribution with a probability of being zero equal to the dropout
ratio. Redefining the weights as eWi :¼ DiWi , the dropout NN can
be viewed as a Bayesian model since the parameters are now
stochastic. Following the Bayesian approach, we define p(ω) to
be the prior distribution over the set of parameters
ω ¼ feW1; eW2; eW3;b1;b2;b3g, and then seek a posterior distribu-
tion over the parameter space by invoking Bayes’ theorem33:

pðω j X;YÞ / pðY j X;ωÞpðωÞ: (6)

Here p(Y ∣ X, ω) is the likelihood for the training set (X, Y).
Given the posterior, we can obtain the predictive distribution

for a QOI z as

pðz j x�;X;YÞ ¼
Z

pðz j x�;ωÞpðω j X;YÞdω; (7)

in which x* are the descriptors for a configuration associated with
the QOI z, and then compute the predictive mean and variance for
z. The difficulty, however, is that the posterior for an NN with
multiple hidden layers cannot be evaluated analytically31. To
tackle this, we can take advantage of variational inference34 that
uses another distribution, q(ω), to approximate the posterior and
replaces p(ω ∣ X, Y) by q(ω) in Eq. (7) to make predictions. Using
this variational inference approach, Gal and Ghahramani30,31 have
recently shown that training an NN with the dropout technique
approximates a Bayesian NN. Consequently, a dropout NN can be
used to extract uncertainty information.
In practice, for a QOI z, multiple stochastic forward passes are

performed through the dropout NN potential (each with a
different realization of the dropout matrices) to obtain multiple
samples of the QOI z1, z2, …. The average and standard deviation
(SD) of these samples are the predictive mean and uncertainty. (A
more efficient approach involving uncertainty propagation is
described below.) We refer to a dropout NN potential employing
uncertainty estimation as a DUNN potential.
The averaging procedure described above can also be

interpreted using frequentist statistics. As pointed out by
Srivastava et al.29, applying dropout to a fully connected NN
amounts to sampling a “thinned” NN from it. The thinned NN
consists of all the nodes that survive the dropout. An NN with a
total number of n nodes can be considered an ensemble of 2n

possible thinned NNs, and therefore training an NN with dropout
can be seen as training this ensemble. Consequently, using a
DUNN potential to make predictions is equivalent to drawing
samples from an ensemble of IPs.
We demonstrate the utility of the uncertainty estimation

procedure described above for a DUNN potential for carbon

systems. A number of high-quality machine learning IPs for carbon
have been reported in the literature3,35–37. We note that the
purpose of this paper is not to develop a better IP (e.g., in terms of
accuracy), but to explore the idea of using NN dropout to estimate
the uncertainty of a machine learning IP’s predictions. The DUNN
potential is fit to a training set of energies and forces for
monolayer graphene, bilayer graphene, and graphite obtained
from DFT calculations. (See Supplementary Note 2 for details on
the training of the DUNN potential.) We show how the uncertainty
estimation built into the DUNN model can be applied to physical
properties, and how it can be used to determine the limits of
transferability. We also explore the intriguing possibility of using
DUNN uncertainty as an estimate for the accuracy of a prediction.

Prediction uncertainty
The key innovation in the DUNN potential is the ability to
associate an uncertainty with any QOI computed with it. We
propose two approaches to computing this uncertainty: a direct
sampling method and a more efficient indirect uncertainty
propagation method.
The sampling method corresponds to the stochastic forward

pass approach described in the formal derivation of the DUNN
potential above. The QOI is computed multiple times in a series
of independent molecular dynamics (MD) simulations, each with
different but fixed dropout matrices in the DUNN potential. The
average and SD of the QOIs obtained from these runs are the
DUNN predictive mean and uncertainty. The number of
simulations that need to be performed for good statistics
depends on the system size and the QOI. The sampling method
is straightforward, but computationally expensive due the
repeated simulations.
In the propagation method, a single MD simulation is

performed, and at each time step, the average and SD in the
energy and forces are evaluated by performing multiple calcula-
tions with different dropout matrices. The atom positions are
updated by integrating the equations of motion using the average
forces, and the uncertainty is propagated through the simulation
to obtain the overall uncertainty in the QOI. The propagation
approach is significantly faster than the sampling method because
at each time step the descriptors only need to be computed once,
and as noted above, calculation of the descriptors is normally the
bottleneck for machine learning IPs. Uncertainty propagation is
formally exact for QOIs that depend linearly on the energy and/or
forces, but can also be used for nonlinear QOIs through
linearization. (In this paper, we limit the discussion to linear QOIs.
See Supplementary Note 2 for an example where uncertainty is
propagated for the magnitude of the forces, which is nonlinear.)
As an example of QOI uncertainty estimation, we compute the

stress in monolayer graphene under uniform straining at room
temperature using an MD simulation. (See the “Methods” section
for details on the simulation and how the stress and the
uncertainty are obtained for the sampling and propagation
methods.) The results are presented in Fig. 2. The plot shows
the normal stress parallel to the graphene plane (σ11) and its
uncertainty over a range of in-plane lattice parameters, corre-
sponding to different strains, computed using both the sampling
and propagation methods (red and blue curves) with the number
of samples set to P = 100. Both approaches give nearly identical
results, but the propagation method is ~40 times faster than direct
sampling for P = 100. (See Supplementary Note 3 for a
convergence study and Supplementary Note 4 for an analysis of
the relative computational cost of the sampling and propagation
methods.) The mean stress and uncertainty magnitudes are at a
minimum at the equilibrium lattice parameter of a = 2.466 Å. The
mean stress scales linearly with lattice constant with a slope
corresponding to a Young’s modulus of 1084 GPa, which is in
excellent agreement with DFT calculations (1084 GPa37) and
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experimental observations (1018 GPa38). (Note that the slight turn
at 2.417 Å is due to buckling of the graphene.) The uncertainty in
the stress (error bar) also increases as the graphene is strained
away from its equilibrium state. This is because as the strain is
increased, the DUNN potential is being applied to configurations
that are increasingly distant from its training set and is therefore
less reliable. (For monolayer graphene, the DUNN training set
includes ab initio MD trajectories using an initial lattice parameter
of a = 2.466 Å and slightly stretched and compressed
configurations with a lattice parameter of a ∈ [2.393, 2.539] Å.)
This observation is in agreement with the uncertainty in atomic
energy (presented as box and whisker plots in Fig. 2), which is an
indirect measure of the distance between these configurations
and the training set. We further explore the relationship between
distance in configuration space and uncertainty in the section on
“Transferability limits”.
As a second example, we consider the phonon dispersion

relations for monolayer graphene. This set of curves provides a
comprehensive view of the elastic vibrational properties of a
material, which play a key role in many dynamical properties,
including thermal transport and stress wave propagation. It is
therefore important for IPs to predict phonon dispersion correctly
and reliably. In Fig. 3, we present the phonon dispersion relations
along high-symmetry points in the first Brillouin zone for the
DUNN potential (dashed lines) compared with DFT results (solid
lines) and the reactive empirical bond-order (REBO) potential
(dotted lines)39. The REBO potential provides the best prediction
for graphene phonon dispersion among a number of empirical
potentials, including Tersoff40, AIREBO41, LCBOP42, and ReaxFF43

(see ref. 37 for a comparison). We see that the DUNN potential is in
very good agreement with DFT, correctly capturing the character-
istics of the flexural acoustic (ZA) branch (e.g., the quadratic nature
near the Γ point) associated with out-of-plane vibrations, which
provides the dominant contribution to lattice thermal conductivity
in graphene44,45. REBO performs comparably to the DUNN
potential for the low-frequency acoustic branches; however, its
predictions for the high-frequency TO and LO branches deviate
significantly from DFT results. (We note that there are other
machine learning IPs for carbon that perform equally well or
better for phonon dispersion of graphene36,37).

In addition to mean values, Fig. 3 shows the uncertainty in the
DUNN predictions indicated by the color bands surrounding the
dashed lines. The uncertainty values were computed using the
sampling method. The uncertainty in the phonon frequencies is
small for the acoustic branches and larger for optical branches as
the absolute phonon frequency increases. These uncertainty
measures, which the DUNN formalism makes possible, can in
turn be propagated to other properties that depend on the
phonon dispersion.

Transferability limits
Earlier we defined transferability as the ability of an IP to predict
properties to which it was not fit, that is, to extrapolate beyond its
training set. Machine learning IPs are inherently limited in this
regard, and therefore methods for assessing whether or not an
evaluation is in the “safe” zone of the IP are important.
One approach, as described in the “Introduction”, is to compute

a measure of the “distance” between a configuration associated
with a QOI and a training set and to use an ad hoc criterion to
determine when this distance is too large. However, this is
challenging to do because the training set of a machine learning
IP consists of a cloud of configurations in a high-dimensional
space (set by the number of descriptors). There can be gaps and
holes in this cloud and it can have a highly complex shape. In
practice, computing a meaningful distance can be quite difficult
and highly problem dependent. It may also be that a configura-
tion is close enough to the training set for some QOIs but not
others, making a single distance measure inappropriate.
Instead, we argue that distance in configuration space is a

surrogate for the actual question, which is whether or not the
machine learning IP provides a reliable (low uncertainty) estimate
for the QOI. For a DUNN potential, this uncertainty can be
computed directly and can therefore be used instead of a
distance. To show that these two notions are related, we compute
the uncertainty in the energy of individual atoms for atomic
environments drawn from a set of configurations from ab initio

Fig. 2 Stress and uncertainty in atomic energy in monolayer
graphene. Results are given for graphene at various lattice
parameters a. The line and error bars (referring to the left vertical
axis) are the predictive mean and uncertainty of the stress
component σ11. The box and whisker plot of the uncertainty in
atomic energy se refer to the right vertical axis. The bar inside the
box denotes the median, the ends of the whiskers represent the
lowest datum, and highest datum within 1.5 interquartile range of
the lower quartile and upper quartile, respectively, and the circles
represent outliers.

Fig. 3 Phonon dispersion in monolayer graphene. Phonon curves
along high-symmetry points Γ, M, K, and Γ in the first Brillouin zone
are shown. The dashed lines and the bands around them represent
the predictive mean and uncertainty obtained from the DUNN
potential. As a comparison, phonon curves obtained from DFT (solid
lines) and the reactive empirical bond-order (REBO) potential
(dotted lines) are also shown. The branches are colored according
to the vibrational modes: green for flexural (Z), blue for transverse
(T), and red for longitudinal (L). “A” and “O” stand for acoustic and
optical, respectively.
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MD trajectories. As noted above, the DUNN potential is trained
against monolayer and bilayer graphene and graphite, but the
atomic environments we consider here are also drawn from a set
of diamond configurations not included in the training set. Our
intention is to test whether the uncertainty increases for
environments that are “far” from the training set. Specifically,
since no diamond-related configurations are included in the
training set, we expect the uncertainty for environments drawn
from perturbed diamond structures to be larger than other
environments that are closer to the training set. To visualize this,
we apply the uniform manifold approximation and projection46

dimensionality reduction technique to embed the atomic
environment descriptors into a three-dimensional space. The
sampled environments, color coded by their parent structure, are
shown in Fig. 4a. We see that the four carbon allotropes form
continuous clusters that are separated from each other.
The corresponding uncertainty in the atomic energy (energy of

an individual atom) is plotted in Fig. 4b. As anticipated, the
uncertainty in the energy for atoms in diamond configurations is
much higher than for those drawn from monolayer, bilayer, and
graphite configurations. We note that all four carbon allotropes
have a similar cohesive energy of ~8 eV/atom; therefore, it is
reasonable to compare absolute energy uncertainties instead of
relative uncertainties. For a more quantitative comparison, Fig. 5a
presents a histogram of the uncertainty in atomic energy for all
sampled environments. The uncertainty for environments near the
training set (monolayer and bilayer graphene and graphite) is
centered at ~10 meV, whereas for diamond environments it is
more than four times larger at 43.9 meV. To verify that this
difference is indeed due to distance from the training set, we refit
the DUNN potential, this time including perturbed diamond
configurations in the training set. The histogram obtained using
the new potential is plotted in Fig. 5b. The uncertainty in the
monolayer, bilayer, and graphite configurations hardly changes,
whereas the uncertainty for the diamond environments decrease
significantly to the same level as the other carbon allotropes. This
provides strong confirmation that on average the uncertainty
estimate is able to detect whether configurations are in or out of
the training set. Also worth mentioning is the shape of the
histogram. The diamond histogram for the original potential (Fig.
5a) is very close to a normal distribution, whereas for the new
potential with diamond in its training set, the histogram becomes
skewed with a heavier tail on the larger uncertainty side (similar to
the other allotropes) (Fig. 5b).
These results support the notion that the DUNN estimate for the

uncertainty in atomic energy correlates with distance from the
training set. This means that by comparing the energy uncertain-
ties of atomic environments associated with a QOI with the

average uncertainty associated with the training set environ-
ments, it is possible to determine whether or not a DUNN
potential is suitable for that QOI. This can also be used as a
criterion for when certain configurations needs to be added to the
training set in order to obtain a reliable estimate for a desired QOI.
To place the above results in the context of existing methods, it

is of interest to compare them with an ensemble model approach.
As discussed in the introduction, ensemble models (e.g.,
committee models constructed using training set subsampling)
have been widely used to quantify uncertainty in machine
learning IPs. We revisit the above transferability limits analysis
for a committee model to contrast its performance with that of the
DUNN potential. (See Supplementary Note 5 for technical details
on the committee model). The histogram of the uncertainty
obtained using the committee model (Supplementary Fig. 3) is
qualitatively similar to Fig. 5. Both approaches are able to
determine transferability limits since the histogram of the
uncertainty for the training set (monolayer, bilayer, and graphite)
does not overlap with the histogram for configurations associated
with the QOI (diamond). However there are important distinctions.
The distributions obtained from the committee model are far
broader, and perhaps due to the limited sample size, the
committee model predicts an uncertainty for diamond configura-
tions that is about an order of magnitude larger than the DUNN
potential when the training set does not contain diamond
configurations (cf. Fig. 5a with Supplementary Fig. 3a). A
quantitative comparison of the uncertainty obtained using the
two models is provided in the next section (“Precision versus
accuracy”). A final difference is the computational cost. In order to
obtain good statistics, a minimum of 20 NNs had to be included in
the committee model. This means that training the committee
model is 20 times more expensive than training a DUNN potential
in this case. This is acceptable for one-pass type training, but it can
become prohibitive for more sophisticated iterative learning
approaches such as active learning.

Precision versus accuracy
Estimates for prediction uncertainty are important for determining
when an IP can be trusted. However, low uncertainty does not
necessarily mean that a prediction is close to reality. It may seem
that it is not possible to know the error in a prediction without
access to more accurate calculations or experimental results;
however, under certain conditions, uncertainty can provide an
estimate. These questions are tied to notions of precision and
accuracy.
Given a set of predictions obtained by varying an IP’s

parameters, accuracy refers to the difference between the mean

Fig. 4 Representations of local atomic environments in carbon systems. The representations are obtained by embedding the local atomic
environments of atoms using the uniform manifold approximation and projection (UMAP) method. Each dot in the plot is the UMAP-
embedded descriptor representation of the environment of a single atom. The dots are colored according to a their parent structure (as
indicated in the figure), and b the uncertainty in atomic energy (with the color coding indicated by the legend). Note that although monolayer
and bilayer graphene and graphite configurations were included in the training set of the DUNN potential, the specific environments plotted
in the figure are drawn from configurations that were not in the training set.
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prediction and the exact value (e.g., DFT result), and precision
refers to the spread in the predictions (i.e., the uncertainty). Recent
work by Sethna and co-workers47,48 has shown empirically that in
certain cases accuracy and precision are correlated. This is
important because it means that a measure of uncertainty (such
as that provided by the DUNN potential) can also be used to
estimate the accuracy of a prediction even when the exact values
are unavailable.
To study the relationship between accuracy and precision in the

predictions of a DUNN potential, we begin by considering the
energy of monolayer graphene as a function of the in-plane lattice
parameter a. At each value of a, the sampling method is used to
obtain the predictive mean and uncertainty from a set of energy
calculations. The DUNN results along with DFT data are plotted in
Fig. 6a. The energy of the graphene increases with distance from
the equilibrium value of a = 2.466 Å. A more explicit comparison
of accuracy and precision is given in Fig. 6b, where we plot the
prediction error (difference between the DUNN mean value and
DFT result) and the uncertainty band. For lattice parameters in the
range a = (2.37, 2.57) Å that fall within or very close to the training
set, the prediction error is bounded by the uncertainty, which is
~10meV/atom in agreement with the box plot in Fig. 2 and on the
same level observed in Fig. 5. As configurations get further from
the training set, both the prediction error and uncertainty grow
rapidly. For configurations that are not “too far” from the training
set (a ∈ (2.34, 2.37) Å and a ∈ (2.57, 2.63) Å), the uncertainty

continues to provide a bound on the error. However, beyond
these values the uncertainty underestimates the prediction error.
The above results suggest that energy uncertainty provides a

bound on prediction error for configurations whose uncertainty
falls within the training set distribution. To test this heuristic, we
examine the energy accuracy and uncertainty for all configura-
tions in the training and test sets. (We also studied accuracy versus
uncertainty for forces, see Supplementary Note 6 for details.) The
energy prediction error is defined as the absolute value of the
energy residual (i.e., the difference between the energy predicted
by the DUNN potential and the DFT reference energy). The
uncertainty is computed using the sampling method. The
prediction error versus uncertainty relation is presented in Fig. 7.
Focusing on Fig. 7a that shows all configurations, we see that
there is a general trend for the error to increase with uncertainty,
and although there is a great deal of scatter, the uncertainty
bounds the error for most configurations (points in the shaded
region have smaller error than uncertainty). To understand the
exceptions, consider that our dataset contains two types of
configurations: (1) perfect crystals and (2) perturbed configura-
tions drawn from MD trajectories where the atoms are off-lattice.
These two configuration types are plotted separately in Fig. 7b, c.
For perfect crystal configurations (Fig. 7b), the error is bounded by
the uncertainty for all configurations in agreement with the biaxial
straining results presented in Fig. 6. Thus, cases where the
uncertainty fails to bound the error are associated with perturbed
configuration as shown in Fig. 7c.

Fig. 5 Histogram of the uncertainty in atomic energy. In a, the training set consists of monolayer and bilayer graphene and graphite, but
not diamond, while in b, the training set includes all four allotropes. The cyan curve in the right plot of a represents a normal distribution
fitted to the histogram. For each carbon allotrope, 4000 local atomic environments are randomly selected. The vertical axis is normalized so
that the area for each carbon allotrope integrates to one, and the histograms on the left are stacked.
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A possible explanation for the difference between crystal
and perturbed configurations is related to the training process.
The DUNN potential is a model for the energy of an individual
atom based on its atomic environment, whereas the dataset
used to train the DUNN model contains DFT total energies,

that is, the energies of entire configurations and not individual
atom energies. For crystal configurations, all atoms have identical
environments, and therefore in this case the DFT total energy
translates directly to DUNN potential predictions improving the fit.
Whereas for perturbed configurations, the training is indirect by
fitting sums of energies to a pool of reference energies. As a result,
the predictions of the model for perturbed configurations are
expected to be less robust. Nevertheless, the results presented
here suggest that using uncertainty as an indicator for accuracy
has merit.
To provide a more quantitative assessment of the uncertainty

and accuracy, we compute the average negative log likelihood
(NLL) for a test set of configurations according to,

NLL ¼ 1
N

XN
i¼1

1
2
log s2i þ

ðti � yiÞ2
2s2i

" #
; (8)

where ti, yi, and si are the target energy, the mean prediction made
by a model, and the uncertainty of the prediction for configuration
i, respectively, and N is the size of the test set. The NLL is obtained
by assuming that the target follows a Gaussian distribution with
the model prediction as its mean and the square of the
uncertainty as its variance (see Supplementary Note 7 for a brief
derivation). The NLL incorporates uncertainty and accuracy into a
single metric, favoring high accuracy (small ðti � yiÞ2) and
penalizing both under- and overconfident estimation of uncer-
tainty (too large or too small si)

49,50. The smaller the NLL, the
better the model.
In addition to the methods for estimating uncertainty specific to

the DUNN and committee models, we considered two additional
uncertainty estimators that assign a single uncertainty value to all

configurations: (1) the SD of the target si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i ðti � tÞ2

q
, in

which t is mean of the target values, and (2) the root-mean-square

error (RMSE) si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i ðti � yiÞ2

q
. The SD ignores model predic-

tions and is solely based on information in the data, thus
providing the roughest estimation of uncertainty. Thus, the NLL
computed using SD uncertainty is expected to be maximal and
serves as a baseline for other uncertainty estimators. The
difference between the NLL obtained using a given estimator
and the SD baseline can be regarded as the gain of information49.
Mean-square error is used as the loss function for optimizing

model parameters in this work. It can be shown that in this case
the NLL obtained using the RMSE uncertainty is the optimal value
(smallest) of all uncertainty estimators (see Supplementary Note 7).
We compute the average NLL for the DUNN model, the

committee model, and a fully connected NN model for

Fig. 6 Energy of monolayer graphene at different in-plane lattice
parameters. a Predictive mean and uncertainty of the energy by
DUNN, where the uncertainty band has a width of twice the
standard deviation in the energy. Also plotted are DFT results. b
Prediction error (difference between the DUNN mean and DFT
result) and uncertainty (standard deviation in energy). The predic-
tion error curve is interpolated using a cubic spline. Note that the
prediction error curve is chopped at a value of 100meV/atom for
better visualization. The left end of the prediction error (at a =
2.32 Å) has a value of 191meV/atom.

Fig. 7 Prediction error versus uncertainty in configuration energy. a All configurations in the training and test sets. The configurations are
divided into two subsets: b perfect crystal structures and c perturbed configurations drawn from MD trajectories. The uncertainty is larger
than the error for points in the shaded region.
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comparison. The results are presented in Table 1. As expected
from the above discussion, the SD NLLs are the largest and the
RMSE NLLs are the smallest for each model. Considering the NLL
for the model-specific uncertainty, we see that the two models are
comparable with DUNN having a slightly lower NLL of −4.73
compared with −4.65 for the committee model. However, it is
worth noting that the DUNN model-specific NLL accounts for 95%
= (−4.73)/(−4.98) of its optimal RMSE NLL, whereas the
committee model only accounts for 84% = (−4.65)/(−5.52),
although the optimal RMSE NLLs for the two models are a bit
different.

DISCUSSION
Machine learning IPs are the next frontier in molecular simulations
offering the prospect of accuracy close to first-principles methods
with a computational cost that is four to five orders of magnitude
lower37. This will greatly increase the scope of static and
dynamical properties and phenomena amenable to predictive
molecular simulation, providing opportunities for quantitative
design of materials and nanoscale devices. However, a key
limitation of this class of IPs is the absence of a physical model,
which greatly limits their ability to extrapolate outside their
training set. To address this shortcoming, in this paper, we
propose a DUNN potential that can provide a rigorous Bayesian
estimate for the uncertainty for any predicted property. Uncer-
tainty can either be computed using a sampling method, where a
simulation is repeated multiple times using the ensemble of
dropout realizations inherent in a DUNN potential, or far more
efficiently by propagating uncertainty within a single simulation.
The uncertainty provides an indication when a DUNN prediction
can be trusted, and when the training set needs to be extended.
Using a DUNN potential for carbon as an example, we explore

the uncertainty for various static and dynamical properties, and
demonstrate how uncertainty can be used to detect configura-
tions lying outside the training set where the model cannot be
trusted. For graphene under uniform stretching, we show that the
uncertainty in the stress grows with the stretch as the configura-
tions move away from the training set. The uncertainty computed
using both the sampling and propagation method is nearly
identical, but the propagation method is ~40 times faster. For a
dynamical property, the uncertainty in different branches of
phonon dispersion is studied. It is found that the uncertainty for
optical branches is larger than for acoustic branches. Information
like this can be used to estimate uncertainty in properties that
depend on the phonon spectrum, such as thermal conductivity.
We also explore an interesting empirical observation regarding
the relationship between prediction uncertainty and accuracy. In
agreement with previous work, we find that uncertainty can also
be a predictor of accuracy, but for machine learning IPs, this
relationship only holds in close proximity to the training set. A
heuristic criterion is proposed for the conditions under which
uncertainty is a predictor of accuracy. Determining the exact limits
of this important property is an area of future research.

METHODS
Dataset
The dataset consists of energies and forces for monolayer graphene,
bilayer graphene, graphite, and diamond in various states, including
strained static structures and configurations drawn from ab initio MD
trajectories. The dataset is generated from DFT calculations using the
Vienna Ab initio Simulation Package51. The exchange-correlation energy of
the electrons is treated within the generalized gradient approximated
functional of Perdew, Burke, and Ernzerhof (PBE)52. To capture van der
Waals effects (a crucial aspect of interlayer interactions in bilayer graphene
and graphite), the semiempirical many-body dispersion (MBD) method53 is
applied. MBD accurately reproduces many results from more advanced
calculations and experiments54. For monolayer graphene, a vacuum of
30 Å in the direction perpendicular to the plane is chosen to minimize the
interaction between periodic images (similar for bilayer graphene). An
energy cutoff of 500 eV is employed for the plane wave basis, and
reciprocal space is sampled using a Γ-centered Monkhorst Pack55 grid. The
number of grid points is set to 16 × 16 × 1 for the smallest supercell in the
dataset (monolayer graphene with two atoms) and to 4 × 4 × 4 for the
largest supercell (diamond with 64 atoms). For other structures, the
number of grid points is selected to ensure that the energy is converged.

Stress
To calculate the stress, MD simulations are performed in the canonical
ensemble (NVT conditions) with a Langevin thermostat to maintain a
temperature of 300 K. We use a periodic rectangular supercell of
monolayer graphene consisting of 96 atoms with in-plane lattice
parameter ranging from 2.343 to 2.589 Å. The zigzag and armchair
directions of the graphene are aligned with the Cartesian x and y
directions. The equations of motion are integrated using a velocity-Verlet
algorithm with a time step of Δt = 1 fs. For both the sampling and
propagation methods, the first 10,000 equilibration steps are discarded.
After this, the system is sampled at one out of every ten steps for a total of
1000 samples to compute the stress.
The full virial stress includes potential and kinetic contributions. We

focus on the potential part, which is directly affected by IP uncertainties.
The potential part of the virial stress σ is computed as a time average6,56:

σ ¼ 1
Nτ

XNτ

τ¼1

1
V

XN
α¼1

rατ � fατ

" #
; (9)

where Nτ is the number of MD steps, rατ and fατ are the position of and force
on atom α at time step τ, N is the number of atoms, V is the volume of the
system defined as the area of the graphene monolayer multiplied by the
van der Waals thickness (3.4 Å in the present case), and⊗ denotes a tensor
product ([a⊗b]ij = aibj). The average and SD in the stress components for
the sampling method using P independent trajectories is

σ ¼ 1
P

XP
p¼1

σp; sσij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

P � 1

XP
p¼1

ðσij;p � σijÞ2
vuut ; (10)

where σp is the stress tensor computed from Eq. (9) in simulation p.
For the propagation method, we rewrite Eq. (9) in matrix form:

S ¼ 1
NτV

RF; (11)

where S is a column matrix of the six independent components of the virial
stress tensor σ, R is a 6 × 3NNτ matrix of the positions of the atoms, and F is
a column matrix of forces of length 3NNτ. (See Supplementary Note 8 for
details on the construction of R and F). With this reformulation, we can
regard R as a matrix without uncertainty. (We assume that the number of
dropout evaluations is sufficiently large so that the SD of the force mean,
which is inversely proportional to the square root of the number of
evaluations, is close to zero thus introducing no uncertainty to the
positions of the atoms that are updated using to the mean forces.)
Therefore, the covariance of S can be estimated as57:

KS ¼ 1

N2
τV

2 RKFRT; (12)

where KS and KF denote the covariance matrices of S and F. The square
roots of the six diagonal elements of KS give the uncertainty in the stress
components. To compute KS, at each MD time step the DUNN potential is
evaluated P times (each with different dropout matrices) to obtain multiple
samples of the forces F1, F2,…, FP. Similar to Eq. (10), the sample mean and

Table 1. Average NLL obtained using three different uncertainty
estimators: SD of the target, RMSE, and model-specific methods.

SD RMSE Model specific

DUNN −2.59 −4.98 −4.73

Committee model −2.59 −5.52 −4.65

Fully connected NN −2.58 −5.42

NLL negative log likelihood, SD standard deviation, RMSE root-mean-
square error.
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the covariance of the forces follow as:

F ¼ 1
P

XP
p¼1

Fp; KF ¼ 1
P � 1

XP
p¼1

ðFp � FÞðFp � FÞT: (13)

The mean forces F and the force covariance KF are then used in Eqs. (11)
and (12) to compute the predictive mean and uncertainty in the stress,
respectively.

Phonon dispersion
The phonon dispersion relations of monolayer graphene are calculated
using the finite difference method implemented in the phonopy
package58.

DATA AVAILABILITY
The dataset used for training the DUNN is publicly available on figshare59 with the
identifier https://doi.org/10.6084/m9.figshare.12649811.

CODE AVAILABILITY
The DUNN potentials are trained using the open-source KIM-based Learning-
Integrated Fitting Framework (KLIFF) available at https://github.com/mjwen/kliff. The
DUNN potentials for carbon developed in this paper are archived as “Portable
Models” (PMs) in the OpenKIM repository60–64 at https://openkim.org. KIM PMs can
be used with any KIM-compliant molecular simulation code, such as ASE65, DL_Poly66,
GULP67, and LAMMPS68. An explanation of how to use the KIM implementation of the
DUNN potential (with examples for LAMMPS) are given in Supplementary Note 9.
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