Jump to: Models | Files | Wiki

LatticeConstantCubicEnergy_diamond_Ar__TE_048754937354_005

Title
A single sentence description.
Equilibrium zero-temperature lattice constant for diamond Ar
Description Equilibrium lattice constant and cohesive energy of diamond Ar at zero temperature and pressure.
Species
The supported atomic species.
Ar
Disclaimer
A short statement of applicability which will accompany any results computed using it. A developer can use the disclaimer to inform users of the intended use of this KIM Item.
This Test was computer-generated
Contributor jl2922
Maintainer karls
Author Junhao Li
Publication Year 2018
Item Citation Click here to download a citation in BibTeX format.
Short KIM ID
The unique KIM identifier code.
TE_048754937354_005
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
LatticeConstantCubicEnergy_diamond_Ar__TE_048754937354_005
Citable Link https://openkim.org/cite/TE_048754937354_005
KIM Item TypeTest
DriverLatticeConstantCubicEnergy__TD_475411767977_005
Properties
Properties as defined in kimspec.edn. These properties are inhereted from the Test Driver.
KIM API Version2.0
Simulator Name
The name of the simulator as defined in kimspec.edn. This Simulator Name is inhereted from the Test Driver.
ase
Programming Language(s)
The programming languages used in the code and the percentage of the code written in each one.
100.00% Python
Previous Version LatticeConstantCubicEnergy_diamond_Ar__TE_048754937354_004
LatticeConstantCubicEnergy diamond Ar TE_048754937354_005


Models

LJ_Shifted__MD_498634107543_003
Model Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
LJ_Shifted_Bernardes_1958HighCutoff_Ar__MO_242741380554_003 view 6744
LJ_Shifted_Bernardes_1958LowCutoff_Ar__MO_720819638419_003 view 1796
LJ_Shifted_Bernardes_1958MedCutoff_Ar__MO_126566794224_003 view 3702
LJ_Smoothed__MD_716364606252_001
Model Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
LJ_Smoothed_Bernardes_1958_Ar__MO_764178710049_001 view 1759
LJ_Truncated__MD_132729421025_001
Model Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
LJ_Truncated_Nguyen_2005_Ar__MO_398194508715_001 view 5241
LJ__MD_414112407348_003
Model Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
LJ_ElliottAkerson_2015_Universal__MO_959249795837_003 view 10080
Morse_QuinticSmoothed__MD_093895395358_002
Model Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Morse_QuinticSmoothed_Jelinek_1972_Ar__MO_908645784389_001 view 1796
Morse_Shifted__MD_552566534109_002
Model Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Morse_Shifted_Jelinek_1972_Ar__MO_831902330215_002 view 1576
Morse_SigmoidalSmoothed__MD_199191711608_001
Model Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Morse_SigmoidalSmoothed_Jelinek_1972_Ar__MO_071460865933_001 view 1429
No Driver
Model Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Exp6_KongChakrabarty_1973_ArNe__MO_946046425752_002 view 1539


Errors

  • No Errors associated with this Test


Download Dependency

This Test requires a Test Driver. Archives for the Test Driver LatticeConstantCubicEnergy__TD_475411767977_005 appear below.


LatticeConstantCubicEnergy__TD_475411767977_005.txz Tar+XZ Linux and OS X archive
LatticeConstantCubicEnergy__TD_475411767977_005.zip Zip Windows archive

Wiki

Wiki is ready to accept new content.

Login to edit Wiki content