// -*- C++ -*-
// Vec.h: Vectors in three-dimensional space, i.e. three doubles.
//
// Copyright (C) 2001-2011 Jakob Schiotz and Center for Individual
// Nanoparticle Functionality, Department of Physics, Technical
// University of Denmark. Email: schiotz@fysik.dtu.dk
//
// This file is part of Asap version 3.
// Asap is released under the GNU Lesser Public License (LGPL) version 3.
// However, the parts of Asap distributed within the OpenKIM project
// (including this file) are also released under the Common Development
// and Distribution License (CDDL) version 1.0.
//
// This program is free software: you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License
// version 3 as published by the Free Software Foundation. Permission
// to use other versions of the GNU Lesser General Public License may
// granted by Jakob Schiotz or the head of department of the
// Department of Physics, Technical University of Denmark, as
// described in section 14 of the GNU General Public License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// and the GNU Lesser Public License along with this program. If not,
// see .
#ifndef _VEC_H
#define _VEC_H
#include "Asap.h"
#include
using std::istream;
using std::ostream;
namespace ASAPSPACE {
/// A 3-vector useful for postions etc.
/// The only data is the three positions (and there are no virtual
/// functions), so the memory layout of an array of Vecs will be x0,
/// y0, z0, x1, y1, z1, x2, ...
///
/// Almost all operations are inline for speed.
class Vec
{
public:
/// Dummy constructor needed by STL containers.
Vec() {};
/// Construct a 3-vector from three doubles.
Vec(double x0, double x1, double x2);
/// Dot product
double operator*(const Vec& v) const;
/// Multiplication with scalar
Vec operator*(const double& s) const;
friend Vec operator*(const double &s, const Vec v);
/// Division with scalar
Vec operator/(const double& s) const;
/// Add two Vecs
Vec operator+(const Vec& v) const;
/// Subtract two Vecs
Vec operator-(const Vec& v) const;
/// Unary minus
Vec operator-() const;
/// Add a Vec to this one.
Vec& operator+=(const Vec& v);
/// Subtract a vec from this one.
Vec& operator-=(const Vec& v);
/// Multiply this vec with a scalar
Vec& operator*=(double s);
/// Divide this Vec with a scalar.
Vec& operator/=(double s);
/// Vec equality (bitwise!)
bool operator==(const Vec &v) const;
/// Vec inequality (bitwise!)
bool operator!=(const Vec &v) const;
/// const indexing
double operator[](int n) const;
/// Non-const indexing
double& operator[](int n);
/// Cross product of two Vecs.
friend Vec Cross(const Vec& v1, const Vec& v2);
/// The length of a Vec
friend double Length2(const Vec& v);
/// Increment y with a times x.
friend void Vaxpy(double a, const Vec& x, Vec& y);
/// Print a Vec
friend ostream& operator<<(ostream& out, const Vec& v);
/// Read a Vec
friend istream& operator>>(istream& in, Vec& v);
public:
double x[3]; ///< The actual data.
};
inline Vec::Vec(double x0, double x1, double x2)
{
x[0] = x0;
x[1] = x1;
x[2] = x2;
}
inline double Vec::operator*(const Vec& v) const
{
return x[0] * v.x[0] + x[1] * v.x[1] + x[2] * v.x[2];
}
inline Vec Vec::operator*(const double& s) const
{
return Vec(s * x[0], s * x[1], s * x[2]);
}
inline Vec operator*(const double &s, const Vec v)
{
return Vec(s * v.x[0], s * v.x[1], s * v.x[2]);
}
inline Vec Vec::operator/(const double& s) const
{
return Vec(x[0] / s, x[1] / s, x[2] / s);
}
inline Vec Vec::operator+(const Vec& v) const
{
return Vec(x[0] + v.x[0], x[1] + v.x[1], x[2] + v.x[2]);
}
inline Vec Vec::operator-(const Vec& v) const
{
return Vec(x[0] - v.x[0], x[1] - v.x[1], x[2] - v.x[2]);
}
inline Vec Vec::operator-() const
{
return Vec(-x[0], -x[1], -x[2]);
}
inline Vec& Vec::operator+=(const Vec& v)
{
x[0] += v.x[0]; x[1] += v.x[1]; x[2] += v.x[2];
return *this;
}
inline Vec& Vec::operator-=(const Vec& v)
{
x[0] -= v.x[0]; x[1] -= v.x[1]; x[2] -= v.x[2];
return *this;
}
inline Vec& Vec::operator*=(double s)
{
x[0] *= s; x[1] *= s; x[2] *= s;
return *this;
}
inline Vec& Vec::operator/=(double s)
{
x[0] /= s; x[1] /= s; x[2] /= s;
return *this;
}
inline bool Vec::operator==(const Vec &v) const
{
return (x[0] == v.x[0]) && (x[1] == v.x[1]) && (x[2] == v.x[2]);
}
inline bool Vec::operator!=(const Vec &v) const
{
return !(*this == v);
}
inline double Vec::operator[](int n) const
{
return x[n];
}
inline double& Vec::operator[](int n)
{
return x[n];
}
inline Vec Cross(const Vec& v1, const Vec& v2)
{
return Vec(v1.x[1] * v2.x[2] - v1.x[2] * v2.x[1],
v1.x[2] * v2.x[0] - v1.x[0] * v2.x[2],
v1.x[0] * v2.x[1] - v1.x[1] * v2.x[0]);
}
inline void Vaxpy(double a, const Vec& x, Vec& y)
{
y.x[0] += a * x.x[0];
y.x[1] += a * x.x[1];
y.x[2] += a * x.x[2];
}
inline double Length2(const Vec& v)
{
return v.x[0] * v.x[0] + v.x[1] * v.x[1] + v.x[2] * v.x[2];
}
} // end namespace
#endif // _VEC_H