{"content-origin" "NIST IPRP (https://www.ctcms.nist.gov/potentials/system/Sn/#Sn)" "contributor-id" "f9afb302-b4eb-4b55-a4e3-676ba64bfb77" "description" "A new interatomic potential for the pure tin (Sn) system is developed based on the second-nearest-neighbor modified embedded-atom-method formalism. The potential parameters were optimized based on the force-matching method utilizing the density functional theory (DFT) database of atomic configurations' energies and forces under various conditions. The developed potential significantly improves the reproducibility of many fundamental physical properties compared to previously reported modified embedded-atom method (MEAM) potentials, especially properties of the β phase stable at the ambient condition. Subsequent free energy calculations based on the quasiharmonic approximation and molecular-dynamics simulations verify that the developed potential can be successfully applied to study the allotropic phase transformation between α and β phases and diffusion phenomena of pure tin." "developer" ["00a8aa29-bb6a-443b-b97d-6c6f10e49e03" "6757440f-503e-4a7d-8011-ac55b8101406" "2c943b98-6e9d-4d17-bebc-a5d109860bfc" "83093c8b-1d0c-40af-b72a-789516aff5a5"] "doi" "10.25950/d82bf465" "domain" "openkim.org" "executables" [] "extended-id" "MEAM_LAMMPS_KoKimKwon_2018_Sn__MO_129364204512_000" "kim-api-version" "2.2" "maintainer-id" "f9afb302-b4eb-4b55-a4e3-676ba64bfb77" "model-driver" "MEAM_LAMMPS__MD_249792265679_000" "potential-type" "meam" "publication-year" "2021" "source-citations" [{"author" "Ko, Won-Seok and Kim, Dong-Hyun and Kwon, Yong-Jai and Lee, Min Hyung" "doi" "10.3390/met8110900" "journal" "Metals" "month" "" "note" "" "number" "11" "pages" "900" "recordkey" "MO_129364204512_000a" "recordprimary" "recordprimary" "recordtype" "article" "title" "Atomistic Simulations of Pure Tin Based on a New Modified Embedded-Atom Method Interatomic Potential" "volume" "8" "year" "2018"}] "species" ["Sn"] "title" "MEAM potential for the pure tin (Sn) system developed by Ko et al. (2018) v000"}