Model name? Sim_LAMMPS_GW_GaoWeber_2002_SiC__SM_606253546840_000 Temperature (K)? No temperature given Cauchy stress (literal list of floats, Voigt order xx,yy,zz,yz,xz,xy, eV/A^3)? No stress given Runtime arguments (literal dictonary)? No runtime arguments given Initial parameters from query or test_generator (literal list of dicts)? [ { "property-id": "tag:staff@noreply.openkim.org,2023-02-21:property/crystal-structure-npt", "instance-id": 1, "prototype-label": { "source-value": "A_tI8_139_h" }, "stoichiometric-species": { "source-value": [ "Si" ] }, "a": { "source-value": 6.217634654533401, "source-unit": "angstrom", "si-unit": "m", "si-value": 6.217634654533401e-10 }, "parameter-names": { "source-value": [ "c/a", "x1" ] }, "parameter-values": { "source-value": [ 0.6188277773215087, 0.1863402443119411 ] }, "short-name": { "source-value": [ "Hypothetical Tetrahedrally Bonded Carbon with 4-Member Rings Model Structure" ] }, "library-prototype-label": { "source-value": "A_tI8_139_h-001" }, "cell-cauchy-stress": { "source-value": [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], "source-unit": "eV/angstrom^3", "si-unit": "kg / m s^2", "si-value": [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] }, "temperature": { "source-value": 0.0, "source-unit": "K", "si-unit": "K", "si-value": 0.0 }, "crystal-genome-source-structure-id": { "source-value": [ [ "RD_322136828324_000" ] ] }, "coordinates-file": { "source-value": "instance-1.poscar" }, "coordinates-file-conventional": { "source-value": "conventional.instance-1.poscar" }, "meta": { "uuid": "TE_468993710876_003-and-SM_606253546840_000-1752531546-tr", "path": "tr/TE_468993710876_003-and-SM_606253546840_000-1752531546-tr", "type": "tr", "_id": "TE_468993710876_003-and-SM_606253546840_000-1752531546-tr", "runner": { "extended-id": "EquilibriumCrystalStructure_A_tI8_139_h_Si__TE_468993710876_003", "short-id": "TE_468993710876_003", "kimid-prefix": "EquilibriumCrystalStructure_A_tI8_139_h_Si", "kimid-typecode": "te", "kimid-number": "468993710876", "kimid-version": "003", "kimid-version-as-integer": 3, "name": "EquilibriumCrystalStructure_A_tI8_139_h_Si", "type": "te", "kimnum": "468993710876", "version": 3, "shortcode": "TE_468993710876", "kimcode": "EquilibriumCrystalStructure_A_tI8_139_h_Si__TE_468993710876_003", "path": "te/EquilibriumCrystalStructure_A_tI8_139_h_Si__TE_468993710876_003", "approved": true, "_id": "EquilibriumCrystalStructure_A_tI8_139_h_Si__TE_468993710876_003", "makeable": true, "runner": true, "driver": { "extended-id": "EquilibriumCrystalStructure__TD_457028483760_003", "short-id": "TD_457028483760_003", "kimid-prefix": "EquilibriumCrystalStructure", "kimid-typecode": "td", "kimid-number": "457028483760", "kimid-version": "003", "kimid-version-as-integer": 3, "name": "EquilibriumCrystalStructure", "type": "td", "kimnum": "457028483760", "version": 3, "shortcode": "TD_457028483760", "kimcode": "EquilibriumCrystalStructure__TD_457028483760_003", "path": "td/EquilibriumCrystalStructure__TD_457028483760_003", "approved": true, "_id": "EquilibriumCrystalStructure__TD_457028483760_003", "makeable": true, "driver": true, "contributor-id": "4ad03136-ed7f-4316-b586-1e94ccceb311", "description": "Computes the equilibrium crystal structure and energy for an arbitrary crystal at zero temperature and applied stress by performing symmetry-constrained relaxation. The crystal structure is specified using the AFLOW prototype designation. Multiple sets of free parameters corresponding to the crystal prototype may be specified as initial guesses for structure optimization. No guarantee is made regarding the stability of computed equilibria, nor that any are the ground state.", "developer": [ "4ad03136-ed7f-4316-b586-1e94ccceb311", "360c0aed-48ce-45f6-ba13-337f12a531e8" ], "doi": "10.25950/866c7cfa", "domain": "openkim.org", "executables": [ "runner", "test_template/runner" ], "funding": [ { "award-number": "NSF DMR-1834251", "award-title": "Collaborative Research: Reliable Materials Simulation based on the Knowledgebase of Interatomic Models (KIM)", "funder-identifier": "https://doi.org/10.13039/100000001", "funder-identifier-type": "Crossref Funder ID", "funder-name": "National Science Foundation", "scheme-uri": "http://doi.org/" } ], "kim-api-version": "2.3", "maintainer-id": "4ad03136-ed7f-4316-b586-1e94ccceb311", "properties": [ "tag:staff@noreply.openkim.org,2023-02-21:property/binding-energy-crystal", "tag:staff@noreply.openkim.org,2023-02-21:property/crystal-structure-npt", "tag:staff@noreply.openkim.org,2025-04-15:property/mass-density-crystal-npt" ], "publication-year": "2025", "simulator-name": "ase", "source-citations": [ { "abstract": "Empirical databases of crystal structures and thermodynamic properties are fundamental tools for materials research. Recent rapid proliferation of computational data on materials properties presents the possibility to complement and extend the databases where the experimental data is lacking or difficult to obtain. Enhanced repositories that integrate both computational and empirical approaches open novel opportunities for structure discovery and optimization, including uncovering of unsuspected compounds, metastable structures and correlations between various characteristics. The practical realization of these opportunities depends on a systematic compilation and classification of the generated data in addition to an accessible interface for the materials science community. In this paper we present an extensive repository, aflowlib.org, comprising phase-diagrams, electronic structure and magnetic properties, generated by the high-throughput framework AFLOW. This continuously updated compilation currently contains over 150,000 thermodynamic entries for alloys, covering the entire composition range of more than 650 binary systems, 13,000 electronic structure analyses of inorganic compounds, and 50,000 entries for novel potential magnetic and spintronics systems. The repository is available for the scientific community on the website of the materials research consortium, aflowlib.org.", "author": "Curtarolo, Stefano and Setyawan, Wahyu and Wang, Shidong and Xue, Junkai and Yang, Kesong and Taylor, Richard H. and Nelson, Lance J. and Hart, Gus L.W. and Sanvito, Stefano and Buongiorno-Nardelli, Marco and Mingo, Natalio and Levy, Ohad", "doi": "https://doi.org/10.1016/j.commatsci.2012.02.002", "issn": "0927-0256", "journal": "Computational Materials Science", "keywords": "High-throughput, Combinatorial materials science, Ab initio, AFLOW, Materials genome initiative", "pages": "227-235", "recordkey": "TD_457028483760_003a", "recordtype": "article", "title": "{AFLOWLIB.ORG}: A distributed materials properties repository from high-throughput ab initio calculations", "url": "https://www.sciencedirect.com/science/article/pii/S0927025612000687", "volume": "58", "year": "2012" }, { "abstract": "To enable materials databases supporting computational and experimental research, it is critical to develop platforms that both facilitate access to the data and provide the tools used to generate/analyze it \u2014 all while considering the diversity of users\u2019 experience levels and usage needs. The recently formulated FAIR\u00a0principles (Findable, Accessible, Interoperable, and Reusable) establish a common framework to aid these efforts. This article describes aflow.org, a web ecosystem developed to provide FAIR-compliant access to the AFLOW\u00a0databases. Graphical and programmatic retrieval methods are offered, ensuring accessibility for all experience levels and data needs. aflow.org\u00a0goes beyond data-access by providing applications to important features of the AFLOW\u00a0software\u00a0[1], assisting users in their own calculations without the need to install the entire high-throughput framework. Outreach commitments to provide AFLOW\u00a0tutorials and materials science education to a global and diverse audiences will also be presented.", "author": "Esters, Marco and Oses, Corey and Divilov, Simon and Eckert, Hagen and Friedrich, Rico and Hicks, David and Mehl, Michael J. and Rose, Frisco and Smolyanyuk, Andriy and Calzolari, Arrigo and Campilongo, Xiomara and Toher, Cormac and Curtarolo, Stefano", "doi": "https://doi.org/10.1016/j.commatsci.2022.111808", "issn": "0927-0256", "journal": "Computational Materials Science", "keywords": "Autonomous materials science, Materials genome initiative, aflow, Computational ecosystems, Online tools, Database, Ab initio", "pages": "111808", "recordkey": "TD_457028483760_003b", "recordtype": "article", "title": "aflow.org: A web ecosystem of databases, software and tools", "url": "https://www.sciencedirect.com/science/article/pii/S0927025622005195", "volume": "216", "year": "2023" }, { "abstract": "The realization of novel technological opportunities given by computational and autonomous materials design requires efficient and effective frameworks. For more than two decades, aflow++ (Automatic-Flow Framework for Materials Discovery) has provided an interconnected collection of algorithms and workflows to address this challenge. This article contains an overview of the software and some of its most heavily-used functionalities, including algorithmic details, standards, and examples. Key thrusts are highlighted: the calculation of structural, electronic, thermodynamic, and thermomechanical properties in addition to the modeling of complex materials, such as high-entropy ceramics and bulk metallic glasses. The aflow++ software prioritizes interoperability, minimizing the number of independent parameters and tolerances. It ensures consistency of results across property sets \u2014 facilitating machine learning studies. The software also features various validation schemes, offering real-time quality assurance for data generated in a high-throughput fashion. Altogether, these considerations contribute to the development of large and reliable materials databases that can ultimately deliver future materials systems.", "author": "Oses, Corey and Esters, Marco and Hicks, David and Divilov, Simon and Eckert, Hagen and Friedrich, Rico and Mehl, Michael J. and Smolyanyuk, Andriy and Campilongo, Xiomara and {van de Walle}, Axel and Schroers, Jan and Kusne, A. Gilad and Takeuchi, Ichiro and Zurek, Eva and Nardelli, Marco Buongiorno and Fornari, Marco and Lederer, Yoav and Levy, Ohad and Toher, Cormac and Curtarolo, Stefano", "doi": "https://doi.org/10.1016/j.commatsci.2022.111889", "issn": "0927-0256", "journal": "Computational Materials Science", "keywords": "AFLOW, Autonomous computation, Machine learning, Workflows", "pages": "111889", "recordkey": "TD_457028483760_003c", "recordtype": "article", "title": "aflow++: A {C}++ framework for autonomous materials design", "url": "https://www.sciencedirect.com/science/article/pii/S0927025622006000", "volume": "217", "year": "2023" } ], "title": "Equilibrium structure and energy for a crystal structure at zero temperature and pressure v003", "created_on": "2025-04-22 16:17:53.660578" }, "dependencies": [], "title": "Equilibrium crystal structure and energy for Si in AFLOW crystal prototype A_tI8_139_h v003", "test-driver": "EquilibriumCrystalStructure__TD_457028483760_003", "species": [ "Si" ], "developer": [ "4ad03136-ed7f-4316-b586-1e94ccceb311", "360c0aed-48ce-45f6-ba13-337f12a531e8", "4d62befd-21c4-42b8-a472-86132e6591f3", "c4d2afd1-647e-4347-ae94-5e4772c16883" ], "description": "Computes the equilibrium crystal structure and energy for Si in AFLOW crystal prototype A_tI8_139_h at zero temperature and applied stress by performing symmetry-constrained relaxation. The following initial guess for the parameters (representing cell and internal degrees of freedom) allowed to vary during the relaxation is used:\na (angstrom): 6.6881, c/a: 0.57703982, x1: 0.8213634, obtained from OpenKIM Reference Data item RD_322136828324_000", "disclaimer": "Computer generated", "contributor-id": "4ad03136-ed7f-4316-b586-1e94ccceb311", "maintainer-id": "4ad03136-ed7f-4316-b586-1e94ccceb311", "kim-api-version": "2.3", "publication-year": "2025", "executables": [ "runner" ], "domain": "openkim.org", "matching-models": [ "standard-models" ], "created_on": "2025-07-14 21:43:13.004004" }, "subject": { "extended-id": "Sim_LAMMPS_GW_GaoWeber_2002_SiC__SM_606253546840_000", "short-id": "SM_606253546840_000", "kimid-prefix": "Sim_LAMMPS_GW_GaoWeber_2002_SiC", "kimid-typecode": "sm", "kimid-number": "606253546840", "kimid-version": "000", "kimid-version-as-integer": 0, "name": "Sim_LAMMPS_GW_GaoWeber_2002_SiC", "type": "sm", "kimnum": "606253546840", "version": 0, "shortcode": "SM_606253546840", "kimcode": "Sim_LAMMPS_GW_GaoWeber_2002_SiC__SM_606253546840_000", "path": "sm/Sim_LAMMPS_GW_GaoWeber_2002_SiC__SM_606253546840_000", "approved": true, "_id": "Sim_LAMMPS_GW_GaoWeber_2002_SiC__SM_606253546840_000", "makeable": true, "subject": true, "driver": false, "content-origin": "LAMMPS package 22-Sep-2017", "contributor-id": "fa1c5480-8f03-4349-95c1-96c205a7a333", "description": "Defect energetics in silicon carbide (SiC) have been widely studied using Tersoff potentials, but these potentials do not provide a good description of interstitial properties. In the present work, an empirical many-body interatomic potential is developed by fitting to various equilibrium properties and stable defect configurations in bulk SiC, using a lattice relaxation fitting approach. This parameterized potential has been used to calculate defect formation energies and to determine the most stable configurations for interstitials using the molecular dynamics method. Although the formation energies of vacancies are smaller than those obtained by ab initio calculations, the properties of antisite defects and interstitials are in good agreement with the results calculated by ab initio methods. It is found that the most favorable configurations for C interstitials are <100> and <110> dumbbells on both Si and C sites, with formation energies from 3.04 to 3.95 eV. The most favorable Si interstitial is the tetrahedral interstitial site, surrounded by four C atoms, with a formation energy of 3.97 eV. The present results will be discussed and compared to those obtained by others using various empirical potentials in SiC.", "developer": [ "533747fa-ca92-4ba4-8ad4-92c6c638b23c", "7d1bc1bc-8be2-4772-bec4-5e9520b2c84d" ], "doi": "10.25950/28ce47b3", "domain": "openkim.org", "kim-api-version": "2.1", "maintainer-id": "fa1c5480-8f03-4349-95c1-96c205a7a333", "potential-type": "gw", "publication-year": "2019", "run-compatibility": "portable-models", "simulator-name": "LAMMPS", "simulator-potential": "gw", "source-citations": [ { "author": "Gao, Fei and Weber, William J.", "doi": "10.1016/s0168-583x(02)00600-6", "journal": "Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms", "month": "may", "number": "1-4", "pages": "504--508", "publisher": "Elsevier {BV}", "recordkey": "SM_606253546840_000a", "recordprimary": "recordprimary", "recordtype": "article", "title": "Empirical potential approach for defect properties in 3C-{SiC}", "url": "https://doi.org/10.1016/s0168-583x(02)00600-6", "volume": "191", "year": "2002" } ], "species": [ "C", "Si" ], "title": "LAMMPS Gao-Weber potential for Si-C developed by Gao and Weber (2002) v000", "created_on": "2023-11-29 17:12:59.468116" }, "test": "EquilibriumCrystalStructure_A_tI8_139_h_Si__TE_468993710876_003", "simulator-model": "Sim_LAMMPS_GW_GaoWeber_2002_SiC__SM_606253546840_000", "domain": "openkim.org", "test-result-id": "TE_468993710876_003-and-SM_606253546840_000-1752531546-tr", "created_on": "2025-07-14 23:08:01.947034", "dependencies": [] }, "created_on": "2025-07-14 23:08:01.947034", "inserted_on": "2025-07-15 02:30:06.373791", "latest": true } ] NOTE: The configuration you provided has a maximum force component 0.004316884843130562 eV/angstrom. Unless the Test Driver you are running provides minimization, you may wish to relax the configuration. NOTE: The configuration you provided has a maximum stress component 0.00014482522749675343 eV/angstrom^3 even though the nominal state of the system is unstressed. Unless the Test Driver you are running provides minimization, you may wish to relax the configuration. E L A S T I C C O N S T A N T C A L C U L A T I O N S Summary of completed elastic constants calculation: Method: energy-condensed Step generator: MaxStepGenerator(_base_step=0.0001,_step_nom=None,_num_steps=14,_step_ratio=1.6,offset=0,num_extrap=9,check_num_steps=True,use_exact_steps=True,_scale=500,_state=State(x=array([0., 0., 0., 0., 0., 0.]), method='central', n=2, order=2)) Raw elastic constants [ASE units]: [[-9626.37786 -6083.97863 5.60536 0.00002 0. 0.00006] [-6083.97863 -9626.37787 5.60224 -0. 0.00002 0.00044] [ 5.60536 5.60224 8.15552 0. 0. -0. ] [ 0.00002 -0. 0. 0.11604 0. 0. ] [ 0. 0.00002 0. 0. 0.11604 0. ] [ 0.00006 0.00044 -0. 0. 0. 0.03455]] 95%% Error estimate [ASE units]: [[ 13524.52431 328852.15004 0.01083 0.0001 0.00007 0.00733] [328852.15004 13524.5242 0.01634 0.00001 0.00419 0.00106] [ 0.01083 0.01634 0. 0. 0. 0. ] [ 0.0001 0.00001 0. 0. 0. 0. ] [ 0.00007 0.00419 0. 0. 0. 0. ] [ 0.00733 0.00106 0. 0. 0. 0. ]] Relative norm of error estimate: 28.90198912750216 Relative norm of deviation from material symmetry: 2.0127401417622087e-07 Summary of completed elastic constants calculation: Method: energy-condensed Step generator: MaxStepGenerator(_base_step=0.001,_step_nom=None,_num_steps=14,_step_ratio=1.6,offset=0,num_extrap=9,check_num_steps=True,use_exact_steps=True,_scale=500,_state=State(x=array([0., 0., 0., 0., 0., 0.]), method='central', n=2, order=2)) Raw elastic constants [ASE units]: [[-11713.04682 3184.30892 5.6081 -0. -0. 0. ] [ 3184.30892 -11713.04684 5.6046 0. 0. 0. ] [ 5.6081 5.6046 8.15552 -0. 0. -0. ] [ -0. 0. -0. 0.11604 -0. 0. ] [ -0. 0. 0. -0. 0.11604 0. ] [ 0. 0. -0. 0. 0. 0.03455]] 95%% Error estimate [ASE units]: [[38839.42841 3315.30801 1714.81822 0. 0. 0.00009] [ 3315.30801 38839.4306 1714.82588 0. 0. 0.00004] [ 1714.81822 1714.82588 0. 0. 0. 0. ] [ 0. 0. 0. 0. 0. 0. ] [ 0. 0. 0. 0. 0. 0. ] [ 0.00009 0.00004 0. 0. 0. 0. ]] Relative norm of error estimate: 3.2176189169389198 Relative norm of deviation from material symmetry: 2.040626438515828e-07 Summary of completed elastic constants calculation: Method: stress-condensed Step generator: MaxStepGenerator(_base_step=0.0001,_step_nom=None,_num_steps=14,_step_ratio=1.6,offset=0,num_extrap=9,check_num_steps=True,use_exact_steps=True,_scale=500,_state=State(x=array([0., 0., 0., 0., 0., 0.]), method='central', n=1, order=2)) Raw elastic constants [ASE units]: [[-26.978 141.25221 5.59931 -0. -0. 0. ] [141.25221 -26.97573 5.64415 -0. -0. 0. ] [ 5.59931 5.64415 8.15552 0. 0. -0. ] [ -0. -0. 0. 0.11604 0. -0. ] [ -0. -0. 0. 0. 0.11604 0. ] [ 0. 0. -0. -0. 0. 0.03455]] 95%% Error estimate [ASE units]: [[1018.57827 271.74476 0.00865 0. 0. 0. ] [ 271.74476 1018.63929 0.05014 0. 0. 0. ] [ 0.00865 0.05014 0. 0. 0. 0. ] [ 0. 0. 0. 0. 0. 0. ] [ 0. 0. 0. 0. 0. 0. ] [ 0. 0. 0. 0. 0. 0. ]] Relative norm of error estimate: 7.3139368123533375 Relative norm of deviation from material symmetry: 0.00022015593624750976 Summary of completed elastic constants calculation: Method: stress-condensed Step generator: MaxStepGenerator(_base_step=0.001,_step_nom=None,_num_steps=14,_step_ratio=1.6,offset=0,num_extrap=9,check_num_steps=True,use_exact_steps=True,_scale=500,_state=State(x=array([0., 0., 0., 0., 0., 0.]), method='central', n=1, order=2)) Raw elastic constants [ASE units]: [[-187.46146 130.82706 5.57797 0. 0. 0. ] [ 130.82706 -187.46165 5.57942 0. 0. 0. ] [ 5.57797 5.57942 8.15552 -0. -0. -0. ] [ 0. 0. -0. 0.11604 0. 0. ] [ 0. 0. -0. 0. 0.11604 0. ] [ 0. 0. -0. 0. 0. 0.03455]] 95%% Error estimate [ASE units]: [[110.78512 67.26664 0.12805 0. 0. 0. ] [ 67.26664 110.78531 0.12938 0. 0. 0. ] [ 0.12805 0.12938 0. 0. 0. 0. ] [ 0. 0. 0. 0.00002 0. 0. ] [ 0. 0. 0. 0. 0.00002 0. ] [ 0. 0. 0. 0. 0. 0. ]] Relative norm of error estimate: 0.5664480558241308 Relative norm of deviation from material symmetry: 4.483541766917152e-06 Summary of completed elastic constants calculation: Method: stress-condensed Step generator: MaxStepGenerator(_base_step=0.01,_step_nom=None,_num_steps=14,_step_ratio=1.6,offset=0,num_extrap=9,check_num_steps=True,use_exact_steps=True,_scale=500,_state=State(x=array([0., 0., 0., 0., 0., 0.]), method='central', n=1, order=2)) Raw elastic constants [ASE units]: [[-39.73645 140.7998 2.86309 -0. -0. 0. ] [140.7998 -39.73645 2.86309 -0. -0. 0. ] [ 2.86309 2.86309 8.15552 0. 0. -0. ] [ -0. -0. 0. 0.11584 -0. 0. ] [ -0. -0. 0. -0. 0.11584 0. ] [ 0. 0. -0. 0. 0. 0.03455]] 95%% Error estimate [ASE units]: [[ 81.77011 140.14816 0.00051 0. 0. 0. ] [140.14816 81.77011 0.00051 0. 0. 0. ] [ 0.00051 0.00051 0. 0. 0. 0. ] [ 0. 0. 0. 0.00022 0. 0. ] [ 0. 0. 0. 0. 0.00022 0. ] [ 0. 0. 0. 0. 0. 0. ]] Relative norm of error estimate: 1.107798955779107 Relative norm of deviation from material symmetry: 2.7351398800032293e-09 Summary of completed elastic constants calculation: Method: stress-condensed Step generator: MaxStepGenerator(_base_step=0.1,_step_nom=None,_num_steps=14,_step_ratio=1.6,offset=0,num_extrap=9,check_num_steps=True,use_exact_steps=True,_scale=500,_state=State(x=array([0., 0., 0., 0., 0., 0.]), method='central', n=1, order=2)) Raw elastic constants [ASE units]: [[ 1.62599 1.52678 2.86334 0. -0. 0. ] [ 1.52678 1.62599 2.86334 0. -0. 0. ] [ 2.86334 2.86334 8.15552 0. -0. 0. ] [ 0. 0. 0. -0.07459 -0. -0. ] [-0. -0. -0. -0. -0.07459 -0. ] [ 0. 0. 0. -0. -0. 0.03455]] 95%% Error estimate [ASE units]: [[11.38768 10.24375 0.00045 0. 0. 0. ] [10.24375 11.38768 0.00045 0. 0. 0. ] [ 0.00045 0.00045 0.00001 0. 0. 0. ] [ 0. 0. 0. 0.00001 0. 0. ] [ 0. 0. 0. 0. 0.00001 0. ] [ 0. 0. 0. 0. 0. 0. ]] Relative norm of error estimate: 2.0718989751895407 Relative norm of deviation from material symmetry: 2.1874570594385754e-08 Elastic constants calculation had a relative 95% uncertainty greater than 0.02 and/or relative deviation from material symmetry greater than 0.01. See stdout and logs for calculation details. The following run was chosen as having the lowest error: Method: stress-condensed Step generator: MaxStepGenerator(_base_step=0.001,_step_nom=None,_num_steps=14,_step_ratio=1.6,offset=0,num_extrap=9,check_num_steps=True,use_exact_steps=True,_scale=500,_state=State(x=array([0., 0., 0., 0., 0., 0.]), method='central', n=1, order=2)) Raw elastic constants [ASE units]: [[-187.46146 130.82706 5.57797 0. 0. 0. ] [ 130.82706 -187.46165 5.57942 0. 0. 0. ] [ 5.57797 5.57942 8.15552 -0. -0. -0. ] [ 0. 0. -0. 0.11604 0. 0. ] [ 0. 0. -0. 0. 0.11604 0. ] [ 0. 0. -0. 0. 0. 0.03455]] 95%% Error estimate [ASE units]: [[110.78512 67.26664 0.12805 0. 0. 0. ] [ 67.26664 110.78531 0.12938 0. 0. 0. ] [ 0.12805 0.12938 0. 0. 0. 0. ] [ 0. 0. 0. 0.00002 0. 0. ] [ 0. 0. 0. 0. 0.00002 0. ] [ 0. 0. 0. 0. 0. 0. ]] Relative norm of error estimate: 0.5664480558241308 Relative norm of deviation from material symmetry: 4.483541766917152e-06 R E S U L T S Elastic constants [GPa]: [[-30034.63763 20960.80629 893.68984 0. 0. 0. ] [ 20960.80629 -30034.66714 893.92134 0. 0. 0. ] [ 893.68984 893.92134 1306.65885 -0. -0. -0. ] [ 0. 0. -0. 18.59164 0. 0. ] [ 0. 0. -0. 0. 18.59116 0. ] [ 0. 0. -0. 0. 0. 5.53539]] 95 %% Error estimate [GPa]: [[17749.73233 10777.30419 20.51556 0.00001 0.00002 0. ] [10777.30419 17749.76306 20.72859 0.00001 0.00002 0. ] [ 20.51556 20.72859 0.00036 0.00002 0.00003 0. ] [ 0.00001 0.00001 0.00002 0.00313 0. 0. ] [ 0.00002 0.00002 0.00003 0. 0.00246 0. ] [ 0. 0. 0. 0. 0. 0.00014]] Bulk modulus [GPa] = 1340.6269781101798 Unique elastic constants for space group 139 [GPa] ['c11', 'c12', 'c13', 'c33', 'c44', 'c66'] [-30034.652387742968, 20960.806289737793, 893.8055900975612, 1306.6588527887297, 18.591402804436314, 5.535394083939455] WARNING: Nearest isotropic state not computed.