Model name? EDIP_LAMMPS_JustoBazantKaxiras_1998_Si__MO_315965276297_000 Temperature (K)? No temperature given Cauchy stress (literal list of floats, Voigt order xx,yy,zz,yz,xz,xy, eV/A^3)? No stress given Runtime arguments (literal dictonary)? No runtime arguments given Initial parameters from query or test_generator (literal list of dicts)? [ { "property-id": "tag:staff@noreply.openkim.org,2023-02-21:property/crystal-structure-npt", "instance-id": 1, "prototype-label": { "source-value": "A_tI4_141_a" }, "stoichiometric-species": { "source-value": [ "Si" ] }, "a": { "source-value": 4.854807311461161, "source-unit": "angstrom", "si-unit": "m", "si-value": 4.854807311461161e-10 }, "parameter-names": { "source-value": [ "c/a" ] }, "parameter-values": { "source-value": [ 0.5187832908903349 ] }, "short-name": { "source-value": [ "$\\beta$-Sn ($A5$) Structure" ] }, "library-prototype-label": { "source-value": "A_tI4_141_a-001" }, "cell-cauchy-stress": { "source-value": [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], "source-unit": "eV/angstrom^3", "si-unit": "kg / m s^2", "si-value": [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] }, "temperature": { "source-value": 0.0, "source-unit": "K", "si-unit": "K", "si-value": 0.0 }, "crystal-genome-source-structure-id": { "source-value": [ [ "RD_836155795862_000" ] ] }, "coordinates-file": { "source-value": "instance-1.poscar" }, "coordinates-file-conventional": { "source-value": "conventional.instance-1.poscar" }, "meta": { "uuid": "TE_607606026681_003-and-MO_315965276297_000-1752531361-tr", "path": "tr/TE_607606026681_003-and-MO_315965276297_000-1752531361-tr", "type": "tr", "_id": "TE_607606026681_003-and-MO_315965276297_000-1752531361-tr", "runner": { "extended-id": "EquilibriumCrystalStructure_A_tI4_141_a_Si__TE_607606026681_003", "short-id": "TE_607606026681_003", "kimid-prefix": "EquilibriumCrystalStructure_A_tI4_141_a_Si", "kimid-typecode": "te", "kimid-number": "607606026681", "kimid-version": "003", "kimid-version-as-integer": 3, "name": "EquilibriumCrystalStructure_A_tI4_141_a_Si", "type": "te", "kimnum": "607606026681", "version": 3, "shortcode": "TE_607606026681", "kimcode": "EquilibriumCrystalStructure_A_tI4_141_a_Si__TE_607606026681_003", "path": "te/EquilibriumCrystalStructure_A_tI4_141_a_Si__TE_607606026681_003", "approved": true, "_id": "EquilibriumCrystalStructure_A_tI4_141_a_Si__TE_607606026681_003", "makeable": true, "runner": true, "driver": { "extended-id": "EquilibriumCrystalStructure__TD_457028483760_003", "short-id": "TD_457028483760_003", "kimid-prefix": "EquilibriumCrystalStructure", "kimid-typecode": "td", "kimid-number": "457028483760", "kimid-version": "003", "kimid-version-as-integer": 3, "name": "EquilibriumCrystalStructure", "type": "td", "kimnum": "457028483760", "version": 3, "shortcode": "TD_457028483760", "kimcode": "EquilibriumCrystalStructure__TD_457028483760_003", "path": "td/EquilibriumCrystalStructure__TD_457028483760_003", "approved": true, "_id": "EquilibriumCrystalStructure__TD_457028483760_003", "makeable": true, "driver": true, "contributor-id": "4ad03136-ed7f-4316-b586-1e94ccceb311", "description": "Computes the equilibrium crystal structure and energy for an arbitrary crystal at zero temperature and applied stress by performing symmetry-constrained relaxation. The crystal structure is specified using the AFLOW prototype designation. Multiple sets of free parameters corresponding to the crystal prototype may be specified as initial guesses for structure optimization. No guarantee is made regarding the stability of computed equilibria, nor that any are the ground state.", "developer": [ "4ad03136-ed7f-4316-b586-1e94ccceb311", "360c0aed-48ce-45f6-ba13-337f12a531e8" ], "doi": "10.25950/866c7cfa", "domain": "openkim.org", "executables": [ "runner", "test_template/runner" ], "funding": [ { "award-number": "NSF DMR-1834251", "award-title": "Collaborative Research: Reliable Materials Simulation based on the Knowledgebase of Interatomic Models (KIM)", "funder-identifier": "https://doi.org/10.13039/100000001", "funder-identifier-type": "Crossref Funder ID", "funder-name": "National Science Foundation", "scheme-uri": "http://doi.org/" } ], "kim-api-version": "2.3", "maintainer-id": "4ad03136-ed7f-4316-b586-1e94ccceb311", "properties": [ "tag:staff@noreply.openkim.org,2023-02-21:property/binding-energy-crystal", "tag:staff@noreply.openkim.org,2023-02-21:property/crystal-structure-npt", "tag:staff@noreply.openkim.org,2025-04-15:property/mass-density-crystal-npt" ], "publication-year": "2025", "simulator-name": "ase", "source-citations": [ { "abstract": "Empirical databases of crystal structures and thermodynamic properties are fundamental tools for materials research. Recent rapid proliferation of computational data on materials properties presents the possibility to complement and extend the databases where the experimental data is lacking or difficult to obtain. Enhanced repositories that integrate both computational and empirical approaches open novel opportunities for structure discovery and optimization, including uncovering of unsuspected compounds, metastable structures and correlations between various characteristics. The practical realization of these opportunities depends on a systematic compilation and classification of the generated data in addition to an accessible interface for the materials science community. In this paper we present an extensive repository, aflowlib.org, comprising phase-diagrams, electronic structure and magnetic properties, generated by the high-throughput framework AFLOW. This continuously updated compilation currently contains over 150,000 thermodynamic entries for alloys, covering the entire composition range of more than 650 binary systems, 13,000 electronic structure analyses of inorganic compounds, and 50,000 entries for novel potential magnetic and spintronics systems. The repository is available for the scientific community on the website of the materials research consortium, aflowlib.org.", "author": "Curtarolo, Stefano and Setyawan, Wahyu and Wang, Shidong and Xue, Junkai and Yang, Kesong and Taylor, Richard H. and Nelson, Lance J. and Hart, Gus L.W. and Sanvito, Stefano and Buongiorno-Nardelli, Marco and Mingo, Natalio and Levy, Ohad", "doi": "https://doi.org/10.1016/j.commatsci.2012.02.002", "issn": "0927-0256", "journal": "Computational Materials Science", "keywords": "High-throughput, Combinatorial materials science, Ab initio, AFLOW, Materials genome initiative", "pages": "227-235", "recordkey": "TD_457028483760_003a", "recordtype": "article", "title": "{AFLOWLIB.ORG}: A distributed materials properties repository from high-throughput ab initio calculations", "url": "https://www.sciencedirect.com/science/article/pii/S0927025612000687", "volume": "58", "year": "2012" }, { "abstract": "To enable materials databases supporting computational and experimental research, it is critical to develop platforms that both facilitate access to the data and provide the tools used to generate/analyze it \u2014 all while considering the diversity of users\u2019 experience levels and usage needs. The recently formulated FAIR\u00a0principles (Findable, Accessible, Interoperable, and Reusable) establish a common framework to aid these efforts. This article describes aflow.org, a web ecosystem developed to provide FAIR-compliant access to the AFLOW\u00a0databases. Graphical and programmatic retrieval methods are offered, ensuring accessibility for all experience levels and data needs. aflow.org\u00a0goes beyond data-access by providing applications to important features of the AFLOW\u00a0software\u00a0[1], assisting users in their own calculations without the need to install the entire high-throughput framework. Outreach commitments to provide AFLOW\u00a0tutorials and materials science education to a global and diverse audiences will also be presented.", "author": "Esters, Marco and Oses, Corey and Divilov, Simon and Eckert, Hagen and Friedrich, Rico and Hicks, David and Mehl, Michael J. and Rose, Frisco and Smolyanyuk, Andriy and Calzolari, Arrigo and Campilongo, Xiomara and Toher, Cormac and Curtarolo, Stefano", "doi": "https://doi.org/10.1016/j.commatsci.2022.111808", "issn": "0927-0256", "journal": "Computational Materials Science", "keywords": "Autonomous materials science, Materials genome initiative, aflow, Computational ecosystems, Online tools, Database, Ab initio", "pages": "111808", "recordkey": "TD_457028483760_003b", "recordtype": "article", "title": "aflow.org: A web ecosystem of databases, software and tools", "url": "https://www.sciencedirect.com/science/article/pii/S0927025622005195", "volume": "216", "year": "2023" }, { "abstract": "The realization of novel technological opportunities given by computational and autonomous materials design requires efficient and effective frameworks. For more than two decades, aflow++ (Automatic-Flow Framework for Materials Discovery) has provided an interconnected collection of algorithms and workflows to address this challenge. This article contains an overview of the software and some of its most heavily-used functionalities, including algorithmic details, standards, and examples. Key thrusts are highlighted: the calculation of structural, electronic, thermodynamic, and thermomechanical properties in addition to the modeling of complex materials, such as high-entropy ceramics and bulk metallic glasses. The aflow++ software prioritizes interoperability, minimizing the number of independent parameters and tolerances. It ensures consistency of results across property sets \u2014 facilitating machine learning studies. The software also features various validation schemes, offering real-time quality assurance for data generated in a high-throughput fashion. Altogether, these considerations contribute to the development of large and reliable materials databases that can ultimately deliver future materials systems.", "author": "Oses, Corey and Esters, Marco and Hicks, David and Divilov, Simon and Eckert, Hagen and Friedrich, Rico and Mehl, Michael J. and Smolyanyuk, Andriy and Campilongo, Xiomara and {van de Walle}, Axel and Schroers, Jan and Kusne, A. Gilad and Takeuchi, Ichiro and Zurek, Eva and Nardelli, Marco Buongiorno and Fornari, Marco and Lederer, Yoav and Levy, Ohad and Toher, Cormac and Curtarolo, Stefano", "doi": "https://doi.org/10.1016/j.commatsci.2022.111889", "issn": "0927-0256", "journal": "Computational Materials Science", "keywords": "AFLOW, Autonomous computation, Machine learning, Workflows", "pages": "111889", "recordkey": "TD_457028483760_003c", "recordtype": "article", "title": "aflow++: A {C}++ framework for autonomous materials design", "url": "https://www.sciencedirect.com/science/article/pii/S0927025622006000", "volume": "217", "year": "2023" } ], "title": "Equilibrium structure and energy for a crystal structure at zero temperature and pressure v003", "created_on": "2025-04-22 16:17:53.660578" }, "dependencies": [], "title": "Equilibrium crystal structure and energy for Si in AFLOW crystal prototype A_tI4_141_a v003", "test-driver": "EquilibriumCrystalStructure__TD_457028483760_003", "species": [ "Si" ], "developer": [ "4ad03136-ed7f-4316-b586-1e94ccceb311", "360c0aed-48ce-45f6-ba13-337f12a531e8", "4d62befd-21c4-42b8-a472-86132e6591f3", "c4d2afd1-647e-4347-ae94-5e4772c16883" ], "description": "Computes the equilibrium crystal structure and energy for Si in AFLOW crystal prototype A_tI4_141_a at zero temperature and applied stress by performing symmetry-constrained relaxation. The following initial guess for the parameters (representing cell and internal degrees of freedom) allowed to vary during the relaxation is used:\na (angstrom): 4.8146, c/a: 0.54949529, obtained from OpenKIM Reference Data item RD_836155795862_000", "disclaimer": "Computer generated", "contributor-id": "4ad03136-ed7f-4316-b586-1e94ccceb311", "maintainer-id": "4ad03136-ed7f-4316-b586-1e94ccceb311", "kim-api-version": "2.3", "publication-year": "2025", "executables": [ "runner" ], "domain": "openkim.org", "matching-models": [ "standard-models" ], "created_on": "2025-07-14 21:43:09.793953" }, "subject": { "extended-id": "EDIP_LAMMPS_JustoBazantKaxiras_1998_Si__MO_315965276297_000", "short-id": "MO_315965276297_000", "kimid-prefix": "EDIP_LAMMPS_JustoBazantKaxiras_1998_Si", "kimid-typecode": "mo", "kimid-number": "315965276297", "kimid-version": "000", "kimid-version-as-integer": 0, "name": "EDIP_LAMMPS_JustoBazantKaxiras_1998_Si", "type": "mo", "kimnum": "315965276297", "version": 0, "shortcode": "MO_315965276297", "kimcode": "EDIP_LAMMPS_JustoBazantKaxiras_1998_Si__MO_315965276297_000", "path": "mo/EDIP_LAMMPS_JustoBazantKaxiras_1998_Si__MO_315965276297_000", "approved": true, "_id": "EDIP_LAMMPS_JustoBazantKaxiras_1998_Si__MO_315965276297_000", "makeable": true, "subject": true, "driver": { "extended-id": "EDIP_LAMMPS__MD_783584031339_000", "short-id": "MD_783584031339_000", "kimid-prefix": "EDIP_LAMMPS", "kimid-typecode": "md", "kimid-number": "783584031339", "kimid-version": "000", "kimid-version-as-integer": 0, "name": "EDIP_LAMMPS", "type": "md", "kimnum": "783584031339", "version": 0, "shortcode": "MD_783584031339", "kimcode": "EDIP_LAMMPS__MD_783584031339_000", "path": "md/EDIP_LAMMPS__MD_783584031339_000", "approved": true, "_id": "EDIP_LAMMPS__MD_783584031339_000", "makeable": true, "driver": true, "content-origin": "The model driver is implemented based on the `edip` and `edip/multi` pair styles adapted from the LAMMPS software package and `edip/c` pair style for carbon by Nigel Marks and Sam McSweeney and rewritten, amended and updated by Yaser Afshar with performance improvements.\n\nLAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org", "contributor-id": "f9afb302-b4eb-4b55-a4e3-676ba64bfb77", "description": "This model driver provides a C++ implementation of the Environment Dependent Interatomic Potential (EDIP) [1,2] and is based on the source code of the `edip` and `edip/multi` pair styles found in the LAMMPS software package. It additionally features an `edip/c` mode not found in any pair styles in LAMMPS, which is an extension of EDIP to carbon that accounts for pi-bonding effects [2].\n\nThe mode of the driver (`edip` for single-species models, `edip/multi` for multispecies models, or `edip/c` for carbon models with pi-bonding effects) is automatically detected based on the input files provided, which must be ASCII text files. For the `edip` and `edip/multi` modes of operation, the driver expects element and parameter files. The element file contains a unique list of chemical elements. In the case of a single species, it automatically chooses the `edip` mode, whereas if multiple species are present, it automatically selects the `edip/multi` mode. However, this driver only expects a parameter file for the `edip/c` mode, since only pure carbon is supported in that case.", "developer": [ "649ccd02-42f3-4fd6-8853-a7029f25ee7b", "34ee9961-48db-4a7a-bce1-2d09ab264f27", "ef476661-e46d-49b8-98b8-fca0ef2eb082", "6ee0e203-4072-42b5-97a0-cf937edf5de8", "f657bdab-e46c-48a4-a26b-2f97f270fe23", "adbb4c66-2901-4647-9ac0-5cdd9ca64ad9" ], "doi": "10.25950/a6a67b9f", "domain": "openkim.org", "executables": [], "implementer": [ "f9afb302-b4eb-4b55-a4e3-676ba64bfb77", "f49f263e-2f22-43f8-b642-62abf885f07e", "29efe69f-fb86-4a71-a67a-cd598f3616c9", "83902117-85e1-4b0f-8a38-ce7d43b143a2" ], "kim-api-version": "2.2", "maintainer-id": "f9afb302-b4eb-4b55-a4e3-676ba64bfb77", "publication-year": "2021", "simulator-potential-compatibility": [ { "compatibility": "full", "simulator-name": "LAMMPS", "simulator-potential": "edip" }, { "compatibility": "full", "simulator-name": "LAMMPS", "simulator-potential": "edip/multi" } ], "source-citations": [ { "author": "Justo, Jo\\~ao F. and Bazant, Martin Z. and Kaxiras, Efthimios and Bulatov, V.V. and Yip, Sidney", "doi": "10.1103/PhysRevB.58.2539", "journal": "Phys. Rev. B", "pages": "2539--2550", "recordkey": "MD_783584031339_000a", "recordprimary": "recordprimary", "recordtype": "article", "title": "Interatomic potential for silicon defects and disordered phases", "volume": "58", "year": "1998" }, { "author": "Marks, N.A.", "doi": "10.1103/PhysRevB.63.035401", "journal": "Phys. Rev. B", "pages": "035401", "recordkey": "MD_783584031339_000b", "recordprimary": "recordprimary", "recordtype": "article", "title": "Generalizing the environment-dependent interaction potential for carbon", "volume": "63", "year": "2000" } ], "title": "The environment-dependent interatomic potential (EDIP) potential v000", "created_on": "2021-08-19 23:28:10.423464" }, "content-origin": "NIST IPRP (https://www.ctcms.nist.gov/potentials/Si.html)", "content-other-locations": "This model is also implemented in KIM model MO_958932894036_002 (https://doi.org/10.25950/545ca247)", "contributor-id": "f9afb302-b4eb-4b55-a4e3-676ba64bfb77", "description": "We develop an empirical potential for silicon which represents a considerable improvement over existing models in describing local bonding for bulk defects and disordered phases. The model consists of two- and three-body interactions with theoretically motivated functional forms that capture chemical and physical trends as explained in a companion paper. The numerical parameters in the functional form are obtained by fitting to a set of ab initio results from quantum-mechanical calculations based on density-functional theory in the local density approximation, which includes various bulk phases and defect structures. We test the potential by applying it to the relaxation of point defects, core properties of partial dislocations, and the structure of disordered phases, none of which are included in the fitting procedure. For dislocations, our model makes predictions in excellent agreement with ab initio and tight-binding calculations. It is the only potential known to describe both the 30\u00b0- and 90\u00b0-partial dislocations in the glide set {111}. The structural and thermodynamic properties of the liquid and amorphous phases are also in good agreement with experimental and ab initio results. Our potential is capable of simulating a quench directly from the liquid to the amorphous phase, and the resulting amorphous structure is more realistic than with existing empirical preparation methods. These advances in transferability come with no extra computational cost, since force evaluation with our model is faster than with the popular potential of Stillinger-Weber, thus allowing reliable atomistic simulations of very large atomic systems.", "developer": [ "649ccd02-42f3-4fd6-8853-a7029f25ee7b", "34ee9961-48db-4a7a-bce1-2d09ab264f27", "ef476661-e46d-49b8-98b8-fca0ef2eb082", "6ee0e203-4072-42b5-97a0-cf937edf5de8", "f657bdab-e46c-48a4-a26b-2f97f270fe23" ], "doi": "10.25950/df324a7d", "domain": "openkim.org", "executables": [], "kim-api-version": "2.2", "maintainer-id": "f9afb302-b4eb-4b55-a4e3-676ba64bfb77", "model-driver": "EDIP_LAMMPS__MD_783584031339_000", "potential-type": "edip", "publication-year": "2021", "source-citations": [ { "author": "Justo, Jo\\~ao F. and Bazant, Martin Z. and Kaxiras, Efthimios and Bulatov, V. V. and Yip, Sidney", "doi": "10.1103/PhysRevB.58.2539", "journal": "Phys. Rev. B", "month": "Aug", "note": "", "number": "", "pages": "2539--2550", "recordkey": "MO_315965276297_000a", "recordprimary": "recordprimary", "recordtype": "article", "title": "Interatomic potential for silicon defects and disordered phases", "volume": "58", "year": "1998" } ], "species": [ "Si" ], "title": "EDIP model for Si developed by Justo et al. (1998) v000", "created_on": "2021-12-05 05:35:24.330014" }, "test": "EquilibriumCrystalStructure_A_tI4_141_a_Si__TE_607606026681_003", "model": "EDIP_LAMMPS_JustoBazantKaxiras_1998_Si__MO_315965276297_000", "domain": "openkim.org", "test-result-id": "TE_607606026681_003-and-MO_315965276297_000-1752531361-tr", "created_on": "2025-07-14 23:06:31.380509", "dependencies": [] }, "created_on": "2025-07-14 23:06:31.380509", "inserted_on": "2025-07-15 02:13:27.744627", "latest": true } ] E L A S T I C C O N S T A N T C A L C U L A T I O N S Summary of completed elastic constants calculation: Method: energy-condensed Step generator: MaxStepGenerator(_base_step=0.0001,_step_nom=None,_num_steps=14,_step_ratio=1.6,offset=0,num_extrap=9,check_num_steps=True,use_exact_steps=True,_scale=500,_state=State(x=array([0., 0., 0., 0., 0., 0.]), method='central', n=2, order=2)) Raw elastic constants [ASE units]: [[ 2.3739 0.49904 0.35156 -0. 0. -0. ] [ 0.49904 2.3734 0.35207 0. -0. -0. ] [ 0.35156 0.35207 2.67528 0. 0. 0. ] [-0. 0. 0. 0.04976 0. 0. ] [ 0. -0. 0. 0. 0.05007 0. ] [-0. -0. 0. 0. 0. 0.1005 ]] 95%% Error estimate [ASE units]: [[0.56457 0.09022 0.00075 0.00001 0. 0. ] [0.09022 0.56362 0.00018 0. 0.00001 0. ] [0.00075 0.00018 0.00008 0. 0. 0. ] [0.00001 0. 0. 0.01637 0. 0. ] [0. 0.00001 0. 0. 0.01694 0. ] [0. 0. 0. 0. 0. 0. ]] Relative norm of error estimate: 0.18336014746000687 Relative norm of deviation from material symmetry: 0.00017381386149662245 Summary of completed elastic constants calculation: Method: energy-condensed Step generator: MaxStepGenerator(_base_step=0.001,_step_nom=None,_num_steps=14,_step_ratio=1.6,offset=0,num_extrap=9,check_num_steps=True,use_exact_steps=True,_scale=500,_state=State(x=array([0., 0., 0., 0., 0., 0.]), method='central', n=2, order=2)) Raw elastic constants [ASE units]: [[ 4.46902 0.34955 0.80561 -0. 0. -0. ] [ 0.34955 4.46902 0.80561 0. 0. 0. ] [ 0.80561 0.80561 5.30599 -0. 0. -0. ] [-0. 0. -0. 0.46804 -0. -0. ] [ 0. 0. 0. -0. 0.46804 0. ] [-0. 0. -0. -0. 0. 0.1005 ]] 95%% Error estimate [ASE units]: [[0.00817 0.00834 0.03395 0. 0. 0. ] [0.00834 0.00817 0.03395 0. 0. 0. ] [0.03395 0.03395 0.00615 0. 0. 0. ] [0. 0. 0. 0.0053 0. 0. ] [0. 0. 0. 0. 0.0053 0. ] [0. 0. 0. 0. 0. 0. ]] Relative norm of error estimate: 0.008411520344688984 Relative norm of deviation from material symmetry: 6.2262846558551065e-09 R E S U L T S Elastic constants [GPa]: [[716.0158 56.00391 129.07342 -0. 0. -0. ] [ 56.00391 716.0158 129.07341 0. 0. 0. ] [129.07342 129.07341 850.11263 -0. 0. -0. ] [ -0. 0. -0. 74.98866 -0. -0. ] [ 0. 0. 0. -0. 74.98866 0. ] [ -0. 0. -0. -0. 0. 16.10144]] 95 %% Error estimate [GPa]: [[1.30834 1.33644 5.43967 0.00002 0.00002 0.00001] [1.33644 1.30834 5.43968 0. 0. 0. ] [5.43967 5.43968 0.9847 0. 0. 0. ] [0.00002 0. 0. 0.8493 0. 0. ] [0.00002 0. 0. 0. 0.8493 0. ] [0.00001 0. 0. 0. 0. 0. ]] Bulk modulus [GPa] = 318.50680864995877 Unique elastic constants for space group 141 [GPa] ['c11', 'c12', 'c13', 'c33', 'c44', 'c66'] [716.0157987792262, 56.003906975695294, 129.07341342099528, 850.1126293745984, 74.98866309969124, 16.10144215439822] Nearest matrix of isotropic elastic constants: Distance to isotropic state [-] = 2.5164283724384204 Isotropic bulk modulus [GPa] = 321.25750091296163 Isotropic shear modulus [GPa] = 99.30474471440489