Model name? ThreeBodyBondOrder_PPM_PurjaPunMishin_2017_Si__MO_566683736730_000 Temperature (K)? No temperature given Cauchy stress (literal list of floats, Voigt order xx,yy,zz,yz,xz,xy, eV/A^3)? No stress given Runtime arguments (literal dictonary)? No runtime arguments given Initial parameters from query or test_generator (literal list of dicts)? [ { "property-id": "tag:staff@noreply.openkim.org,2023-02-21:property/crystal-structure-npt", "instance-id": 1, "disclaimer": "The forces and stresses failed to converge to the requested tolerance", "prototype-label": { "source-value": "A_mC164_15_e20f" }, "stoichiometric-species": { "source-value": [ "Si" ] }, "a": { "source-value": 25.276818876747633, "source-unit": "angstrom", "si-unit": "m", "si-value": 2.527681887674763e-09 }, "parameter-names": { "source-value": [ "b/a", "c/a", "beta", "y1", "x2", "y2", "z2", "x3", "y3", "z3", "x4", "y4", "z4", "x5", "y5", "z5", "x6", "y6", "z6", "x7", "y7", "z7", "x8", "y8", "z8", "x9", "y9", "z9", "x10", "y10", "z10", "x11", "y11", "z11", "x12", "y12", "z12", "x13", "y13", "z13", "x14", "y14", "z14", "x15", "y15", "z15", "x16", "y16", "z16", "x17", "y17", "z17", "x18", "y18", "z18", "x19", "y19", "z19", "x20", "y20", "z20", "x21", "y21", "z21" ] }, "parameter-values": { "source-value": [ 0.5941682766233592, 0.39290920895455456, 85.74131213345233, 0.49819204279618123, 0.552376277711041, 0.10799899713222913, 0.860483710466218, 0.4601840070162315, 0.7535193475796759, 0.8198051089986478, 0.22850825069820546, 0.8717561265214735, 0.8533468771403332, 0.7439571760236268, 0.22992203027952282, 0.7509197000358871, 0.32483575251228647, 0.7746028263738705, 0.6325287902525054, 0.39301912731719635, 0.3177014184383365, 0.20294686271827467, 0.6850711869585961, 0.04260697387084057, 0.8902140763804349, 0.852464399793404, 0.9341833643139572, 0.7071682986604375, 0.8519803619745427, 0.06714051493076714, 0.8338082287212052, 0.9079599564892369, 0.04193936867652351, 0.010570595387162651, 0.30988538698785706, 0.9124473341048751, 0.7391319675519716, 0.3264821074579387, 0.2213626494336623, 0.8935134049863465, 0.3671946405660045, 0.10030915595696195, 0.7764962366509573, 0.6359809890854975, 0.03326040730573109, 0.09951800056549187, 0.43394099751976056, 0.6105226445114513, 0.511991623980167, 0.4489678844322793, 0.9036311310315476, 0.8996122233230825, 0.7658056536053159, 0.11886915403691718, 0.9087701858518265, 0.46203961207002076, 0.25848196791082534, 0.6919980124514185, 0.5248716369985837, 0.34655669189447336, 0.0022891680471390785, 0.39369446057609236, 0.6756568639827438, 0.32879941945393765 ] }, "cell-cauchy-stress": { "source-value": [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], "source-unit": "eV/angstrom^3", "si-unit": "kg / m s^2", "si-value": [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] }, "temperature": { "source-value": 0.0, "source-unit": "K", "si-unit": "K", "si-value": 0.0 }, "crystal-genome-source-structure-id": { "source-value": [ [ "RD_896629836997_000" ] ] }, "coordinates-file": { "source-value": "instance-1.poscar" }, "coordinates-file-conventional": { "source-value": "conventional.instance-1.poscar" }, "meta": { "uuid": "TE_775858106952_003-and-MO_566683736730_000-1752530927-tr", "path": "tr/TE_775858106952_003-and-MO_566683736730_000-1752530927-tr", "type": "tr", "_id": "TE_775858106952_003-and-MO_566683736730_000-1752530927-tr", "runner": { "extended-id": "EquilibriumCrystalStructure_A_mC164_15_e20f_Si__TE_775858106952_003", "short-id": "TE_775858106952_003", "kimid-prefix": "EquilibriumCrystalStructure_A_mC164_15_e20f_Si", "kimid-typecode": "te", "kimid-number": "775858106952", "kimid-version": "003", "kimid-version-as-integer": 3, "name": "EquilibriumCrystalStructure_A_mC164_15_e20f_Si", "type": "te", "kimnum": "775858106952", "version": 3, "shortcode": "TE_775858106952", "kimcode": "EquilibriumCrystalStructure_A_mC164_15_e20f_Si__TE_775858106952_003", "path": "te/EquilibriumCrystalStructure_A_mC164_15_e20f_Si__TE_775858106952_003", "approved": true, "_id": "EquilibriumCrystalStructure_A_mC164_15_e20f_Si__TE_775858106952_003", "makeable": true, "runner": true, "driver": { "extended-id": "EquilibriumCrystalStructure__TD_457028483760_003", "short-id": "TD_457028483760_003", "kimid-prefix": "EquilibriumCrystalStructure", "kimid-typecode": "td", "kimid-number": "457028483760", "kimid-version": "003", "kimid-version-as-integer": 3, "name": "EquilibriumCrystalStructure", "type": "td", "kimnum": "457028483760", "version": 3, "shortcode": "TD_457028483760", "kimcode": "EquilibriumCrystalStructure__TD_457028483760_003", "path": "td/EquilibriumCrystalStructure__TD_457028483760_003", "approved": true, "_id": "EquilibriumCrystalStructure__TD_457028483760_003", "makeable": true, "driver": true, "contributor-id": "4ad03136-ed7f-4316-b586-1e94ccceb311", "description": "Computes the equilibrium crystal structure and energy for an arbitrary crystal at zero temperature and applied stress by performing symmetry-constrained relaxation. The crystal structure is specified using the AFLOW prototype designation. Multiple sets of free parameters corresponding to the crystal prototype may be specified as initial guesses for structure optimization. No guarantee is made regarding the stability of computed equilibria, nor that any are the ground state.", "developer": [ "4ad03136-ed7f-4316-b586-1e94ccceb311", "360c0aed-48ce-45f6-ba13-337f12a531e8" ], "doi": "10.25950/866c7cfa", "domain": "openkim.org", "executables": [ "runner", "test_template/runner" ], "funding": [ { "award-number": "NSF DMR-1834251", "award-title": "Collaborative Research: Reliable Materials Simulation based on the Knowledgebase of Interatomic Models (KIM)", "funder-identifier": "https://doi.org/10.13039/100000001", "funder-identifier-type": "Crossref Funder ID", "funder-name": "National Science Foundation", "scheme-uri": "http://doi.org/" } ], "kim-api-version": "2.3", "maintainer-id": "4ad03136-ed7f-4316-b586-1e94ccceb311", "properties": [ "tag:staff@noreply.openkim.org,2023-02-21:property/binding-energy-crystal", "tag:staff@noreply.openkim.org,2023-02-21:property/crystal-structure-npt", "tag:staff@noreply.openkim.org,2025-04-15:property/mass-density-crystal-npt" ], "publication-year": "2025", "simulator-name": "ase", "source-citations": [ { "abstract": "Empirical databases of crystal structures and thermodynamic properties are fundamental tools for materials research. Recent rapid proliferation of computational data on materials properties presents the possibility to complement and extend the databases where the experimental data is lacking or difficult to obtain. Enhanced repositories that integrate both computational and empirical approaches open novel opportunities for structure discovery and optimization, including uncovering of unsuspected compounds, metastable structures and correlations between various characteristics. The practical realization of these opportunities depends on a systematic compilation and classification of the generated data in addition to an accessible interface for the materials science community. In this paper we present an extensive repository, aflowlib.org, comprising phase-diagrams, electronic structure and magnetic properties, generated by the high-throughput framework AFLOW. This continuously updated compilation currently contains over 150,000 thermodynamic entries for alloys, covering the entire composition range of more than 650 binary systems, 13,000 electronic structure analyses of inorganic compounds, and 50,000 entries for novel potential magnetic and spintronics systems. The repository is available for the scientific community on the website of the materials research consortium, aflowlib.org.", "author": "Curtarolo, Stefano and Setyawan, Wahyu and Wang, Shidong and Xue, Junkai and Yang, Kesong and Taylor, Richard H. and Nelson, Lance J. and Hart, Gus L.W. and Sanvito, Stefano and Buongiorno-Nardelli, Marco and Mingo, Natalio and Levy, Ohad", "doi": "https://doi.org/10.1016/j.commatsci.2012.02.002", "issn": "0927-0256", "journal": "Computational Materials Science", "keywords": "High-throughput, Combinatorial materials science, Ab initio, AFLOW, Materials genome initiative", "pages": "227-235", "recordkey": "TD_457028483760_003a", "recordtype": "article", "title": "{AFLOWLIB.ORG}: A distributed materials properties repository from high-throughput ab initio calculations", "url": "https://www.sciencedirect.com/science/article/pii/S0927025612000687", "volume": "58", "year": "2012" }, { "abstract": "To enable materials databases supporting computational and experimental research, it is critical to develop platforms that both facilitate access to the data and provide the tools used to generate/analyze it \u2014 all while considering the diversity of users\u2019 experience levels and usage needs. The recently formulated FAIR\u00a0principles (Findable, Accessible, Interoperable, and Reusable) establish a common framework to aid these efforts. This article describes aflow.org, a web ecosystem developed to provide FAIR-compliant access to the AFLOW\u00a0databases. Graphical and programmatic retrieval methods are offered, ensuring accessibility for all experience levels and data needs. aflow.org\u00a0goes beyond data-access by providing applications to important features of the AFLOW\u00a0software\u00a0[1], assisting users in their own calculations without the need to install the entire high-throughput framework. Outreach commitments to provide AFLOW\u00a0tutorials and materials science education to a global and diverse audiences will also be presented.", "author": "Esters, Marco and Oses, Corey and Divilov, Simon and Eckert, Hagen and Friedrich, Rico and Hicks, David and Mehl, Michael J. and Rose, Frisco and Smolyanyuk, Andriy and Calzolari, Arrigo and Campilongo, Xiomara and Toher, Cormac and Curtarolo, Stefano", "doi": "https://doi.org/10.1016/j.commatsci.2022.111808", "issn": "0927-0256", "journal": "Computational Materials Science", "keywords": "Autonomous materials science, Materials genome initiative, aflow, Computational ecosystems, Online tools, Database, Ab initio", "pages": "111808", "recordkey": "TD_457028483760_003b", "recordtype": "article", "title": "aflow.org: A web ecosystem of databases, software and tools", "url": "https://www.sciencedirect.com/science/article/pii/S0927025622005195", "volume": "216", "year": "2023" }, { "abstract": "The realization of novel technological opportunities given by computational and autonomous materials design requires efficient and effective frameworks. For more than two decades, aflow++ (Automatic-Flow Framework for Materials Discovery) has provided an interconnected collection of algorithms and workflows to address this challenge. This article contains an overview of the software and some of its most heavily-used functionalities, including algorithmic details, standards, and examples. Key thrusts are highlighted: the calculation of structural, electronic, thermodynamic, and thermomechanical properties in addition to the modeling of complex materials, such as high-entropy ceramics and bulk metallic glasses. The aflow++ software prioritizes interoperability, minimizing the number of independent parameters and tolerances. It ensures consistency of results across property sets \u2014 facilitating machine learning studies. The software also features various validation schemes, offering real-time quality assurance for data generated in a high-throughput fashion. Altogether, these considerations contribute to the development of large and reliable materials databases that can ultimately deliver future materials systems.", "author": "Oses, Corey and Esters, Marco and Hicks, David and Divilov, Simon and Eckert, Hagen and Friedrich, Rico and Mehl, Michael J. and Smolyanyuk, Andriy and Campilongo, Xiomara and {van de Walle}, Axel and Schroers, Jan and Kusne, A. Gilad and Takeuchi, Ichiro and Zurek, Eva and Nardelli, Marco Buongiorno and Fornari, Marco and Lederer, Yoav and Levy, Ohad and Toher, Cormac and Curtarolo, Stefano", "doi": "https://doi.org/10.1016/j.commatsci.2022.111889", "issn": "0927-0256", "journal": "Computational Materials Science", "keywords": "AFLOW, Autonomous computation, Machine learning, Workflows", "pages": "111889", "recordkey": "TD_457028483760_003c", "recordtype": "article", "title": "aflow++: A {C}++ framework for autonomous materials design", "url": "https://www.sciencedirect.com/science/article/pii/S0927025622006000", "volume": "217", "year": "2023" } ], "title": "Equilibrium structure and energy for a crystal structure at zero temperature and pressure v003", "created_on": "2025-04-22 16:17:53.660578" }, "dependencies": [], "title": "Equilibrium crystal structure and energy for Si in AFLOW crystal prototype A_mC164_15_e20f v003", "test-driver": "EquilibriumCrystalStructure__TD_457028483760_003", "species": [ "Si" ], "developer": [ "4ad03136-ed7f-4316-b586-1e94ccceb311", "360c0aed-48ce-45f6-ba13-337f12a531e8", "4d62befd-21c4-42b8-a472-86132e6591f3", "c4d2afd1-647e-4347-ae94-5e4772c16883" ], "description": "Computes the equilibrium crystal structure and energy for Si in AFLOW crystal prototype A_mC164_15_e20f at zero temperature and applied stress by performing symmetry-constrained relaxation. The following initial guess for the parameters (representing cell and internal degrees of freedom) allowed to vary during the relaxation is used:\na (angstrom): 25.5153, b/a: 0.59626185, c/a: 0.38807304, beta: 85.6678, y1: 0.5018589, x2: 0.68877825, y2: 0.96352682, z2: 0.39618647, x3: 0.85290647, y3: 0.066655781, z3: 0.19885487, x4: 0.85161909, y4: 0.93394953, z4: 0.32543919, x5: 0.90872025, y5: 0.95961914, z5: 0.50215183, x6: 0.39194115, y6: 0.3160815, z6: 0.19689941, x7: 0.45947298, y7: 0.2475486, z7: 0.3176402, x8: 0.2268061, y8: 0.13306616, z8: 0.35835738, x9: 0.74433636, y9: 0.76915545, z9: 0.24636872, x10: 0.32359862, y10: 0.22635453, z10: 0.12155393, x11: 0.30617288, y11: 0.092719903, z11: 0.23378721, x12: 0.44585184, y12: 0.099109512, z12: 0.39907312, x13: 0.76670646, y13: 0.88208696, z13: 0.40378522, x14: 0.46313645, y14: 0.74291846, z14: 0.18744694, x15: 0.52487726, y15: 0.65186183, z15: 0.50503416, x16: 0.39433722, y16: 0.67549036, z16: 0.32193311, x17: 0.43434955, y17: 0.610825, z17: 0.50714113, x18: 0.55091352, y18: 0.89443078, z18: 0.35966828, x19: 0.33102234, y19: 0.78459971, z19: 0.3807846, x20: 0.36635198, y20: 0.90960313, z20: 0.26587063, x21: 0.36114403, y21: 0.039715317, z21: 0.39377295, obtained from OpenKIM Reference Data item RD_896629836997_000", "disclaimer": "Computer generated", "contributor-id": "4ad03136-ed7f-4316-b586-1e94ccceb311", "maintainer-id": "4ad03136-ed7f-4316-b586-1e94ccceb311", "kim-api-version": "2.3", "publication-year": "2025", "executables": [ "runner" ], "domain": "openkim.org", "matching-models": [ "standard-models" ], "created_on": "2025-07-14 21:42:57.465755" }, "subject": { "extended-id": "ThreeBodyBondOrder_PPM_PurjaPunMishin_2017_Si__MO_566683736730_000", "short-id": "MO_566683736730_000", "kimid-prefix": "ThreeBodyBondOrder_PPM_PurjaPunMishin_2017_Si", "kimid-typecode": "mo", "kimid-number": "566683736730", "kimid-version": "000", "kimid-version-as-integer": 0, "name": "ThreeBodyBondOrder_PPM_PurjaPunMishin_2017_Si", "type": "mo", "kimnum": "566683736730", "version": 0, "shortcode": "MO_566683736730", "kimcode": "ThreeBodyBondOrder_PPM_PurjaPunMishin_2017_Si__MO_566683736730_000", "path": "mo/ThreeBodyBondOrder_PPM_PurjaPunMishin_2017_Si__MO_566683736730_000", "approved": true, "_id": "ThreeBodyBondOrder_PPM_PurjaPunMishin_2017_Si__MO_566683736730_000", "makeable": true, "subject": true, "driver": { "extended-id": "ThreeBodyBondOrder_PPM__MD_184422512875_000", "short-id": "MD_184422512875_000", "kimid-prefix": "ThreeBodyBondOrder_PPM", "kimid-typecode": "md", "kimid-number": "184422512875", "kimid-version": "000", "kimid-version-as-integer": 0, "name": "ThreeBodyBondOrder_PPM", "type": "md", "kimnum": "184422512875", "version": 0, "shortcode": "MD_184422512875", "kimcode": "ThreeBodyBondOrder_PPM__MD_184422512875_000", "path": "md/ThreeBodyBondOrder_PPM__MD_184422512875_000", "approved": true, "_id": "ThreeBodyBondOrder_PPM__MD_184422512875_000", "makeable": true, "driver": true, "contributor-id": "c4d2afd1-647e-4347-ae94-5e4772c16883", "description": "This is a model driver for an optimized interatomic potential based on a modified Tersoff form originally constructed for bulk silicon and 2D silicon (silicene). The silicon potential reproduces a wide range of properties of Si and improves over existing potentials with respect to point defect structures and energies, surface energies and reconstructions, thermal expansion, melting temperature and other properties.", "developer": [ "02eb69dc-bae3-460c-aaf4-1513724c986f", "201572cf-870c-477f-b34f-3a6481002dee" ], "doi": "10.25950/23639742", "domain": "openkim.org", "executables": [ "bondorder.inc", "bondorder_aux.inc" ], "implementer": [ "c4d2afd1-647e-4347-ae94-5e4772c16883", "4d62befd-21c4-42b8-a472-86132e6591f3" ], "kim-api-version": "2.0", "maintainer-id": "c4d2afd1-647e-4347-ae94-5e4772c16883", "publication-year": "2019", "source-citations": [ { "author": "Pun, G. P. Purja and Mishin, Y.", "doi": "10.1103/PhysRevB.95.224103", "issue": "22", "journal": "Phys. Rev. B", "numpages": "21", "pages": "224103", "recordkey": "MD_184422512875_000a", "recordtype": "article", "title": "Optimized interatomic potential for silicon and its application to thermal stability of silicene", "volume": "95", "year": "2017" } ], "title": "Three-body bond-order (Tersoff-style) potential by Purja Pun and Mishin (2017) v000", "created_on": "2023-11-10 21:08:50.372998" }, "contributor-id": "c4d2afd1-647e-4347-ae94-5e4772c16883", "description": "An optimized interatomic potential for silicon using a modified Tersoff model. The potential reproduces a wide range of properties of Si and improves over existing potentials with respect to point defect structures and energies, surface energies and reconstructions, thermal expansion, melting temperature and other properties. The proposed potential is compared with three other potentials from the literature. The potentials demonstrate reasonable agreement with first-principles binding energies of small Si clusters as well as single-layer and bilayer silicenes. The four potentials are used to evaluate the thermal stability of free-standing silicenes in the form of nano-ribbons, nano-flakes, and nano-tubes. While single-layer silicene is mechanically stable at zero Kelvin, it is predicted to become unstable and collapse at room temperature. By contrast, the bilayer silicene demonstrates a larger bending rigidity and remains stable at and even above room temperature. The results suggest that bilayer silicene might exist in a free-standing form at ambient conditions.", "developer": [ "02eb69dc-bae3-460c-aaf4-1513724c986f", "201572cf-870c-477f-b34f-3a6481002dee" ], "doi": "10.25950/7495bb93", "domain": "openkim.org", "kim-api-version": "2.0", "maintainer-id": "c4d2afd1-647e-4347-ae94-5e4772c16883", "model-driver": "ThreeBodyBondOrder_PPM__MD_184422512875_000", "potential-type": "ppm", "publication-year": "2019", "source-citations": [ { "author": "Pun, G. P. Purja and Mishin, Y.", "doi": "10.1103/PhysRevB.95.224103", "issue": "22", "journal": "Phys. Rev. B", "numpages": "21", "pages": "224103", "recordkey": "MO_566683736730_000a", "recordprimary": "recordprimary", "recordtype": "article", "title": "Optimized interatomic potential for silicon and its application to thermal stability of silicene", "volume": "95", "year": "2017" } ], "species": [ "Si" ], "title": "Three-body bond-order potential for Si by Purja Pun and Mishin (2017) v000", "created_on": "2023-10-07 07:51:29.299562" }, "test": "EquilibriumCrystalStructure_A_mC164_15_e20f_Si__TE_775858106952_003", "model": "ThreeBodyBondOrder_PPM_PurjaPunMishin_2017_Si__MO_566683736730_000", "domain": "openkim.org", "disclaimer": "instance-id 1: The forces and stresses failed to converge to the requested tolerance\ninstance-id 2: The forces and stresses failed to converge to the requested tolerance\ninstance-id 3: The forces and stresses failed to converge to the requested tolerance\n", "test-result-id": "TE_775858106952_003-and-MO_566683736730_000-1752530927-tr", "created_on": "2025-07-14 23:35:15.937670", "dependencies": [] }, "created_on": "2025-07-14 23:35:15.937670", "inserted_on": "2025-07-15 02:57:56.565763", "latest": true } ] NOTE: The configuration you provided has a maximum force component 0.20827686525105593 eV/angstrom. Unless the Test Driver you are running provides minimization, you may wish to relax the configuration. NOTE: The configuration you provided has a maximum stress component 0.0015702114771386168 eV/angstrom^3 even though the nominal state of the system is unstressed. Unless the Test Driver you are running provides minimization, you may wish to relax the configuration. E L A S T I C C O N S T A N T C A L C U L A T I O N S Summary of completed elastic constants calculation: Method: energy-condensed Step generator: MaxStepGenerator(_base_step=0.0001,_step_nom=None,_num_steps=14,_step_ratio=1.6,offset=0,num_extrap=9,check_num_steps=True,use_exact_steps=True,_scale=500,_state=State(x=array([0., 0., 0., 0., 0., 0.]), method='central', n=2, order=2)) Raw elastic constants [ASE units]: [[ 73090.33545 -207720.06599 -5.28539 29813.89303 159862.17128 133250.4056 ] [ -207720.06599 309132.98127 -37498.02178 259338.02005 -367.13416 63174.47202] [ -5.28539 -37498.02178 -101425.76834 3323.80359 -105675.69986 -1287305.48476] [ 29813.89303 259338.02005 3323.80359 38624971.50519 184671.52872 -79625.06127] [ 159862.17128 -367.13416 -105675.69986 184671.52872 340091.92063 81.54926] [ 133250.4056 63174.47202 -1287305.48476 -79625.06127 81.54926 1903911.99531]] 95%% Error estimate [ASE units]: [[ 5579416.63785 2113421.99446 1836134.21342 385681.93961 650933.80035 1386659.75891] [ 2113421.99446 1282409.3655 6487356.3652 277756.21558 49087.06619 1472988.71385] [ 1836134.21342 6487356.3652 1446593.84588 3747839.20287 3809179.31674 1404218.49452] [ 385681.93961 277756.21558 3747839.20287 16312206.45441 509714.44028 198774.51443] [ 650933.80035 49087.06619 3809179.31674 509714.44028 237735.27539 862020.45957] [ 1386659.75891 1472988.71385 1404218.49452 198774.51443 862020.45957 1885121.96114]] Relative norm of error estimate: 0.4769997334313249 Relative norm of deviation from material symmetry: 0.03481611504262822 Summary of completed elastic constants calculation: Method: energy-condensed Step generator: MaxStepGenerator(_base_step=0.001,_step_nom=None,_num_steps=14,_step_ratio=1.6,offset=0,num_extrap=9,check_num_steps=True,use_exact_steps=True,_scale=500,_state=State(x=array([0., 0., 0., 0., 0., 0.]), method='central', n=2, order=2)) Raw elastic constants [ASE units]: [[ 34829.5867 15906.35084 1283.57562 -548.65784 -21.94211 2829.30567] [ 15906.35084 15627.89337 1450.25378 -1889.45528 -713.47747 -68747.11821] [ 1283.57562 1450.25378 90258.51411 -1428.70994 164.17279 -5293.50813] [ -548.65784 -1889.45528 -1428.70994 1926.30782 4516.4676 -40.62115] [ -21.94211 -713.47747 164.17279 4516.4676 23386.09701 -394.58437] [ 2829.30567 -68747.11821 -5293.50813 -40.62115 -394.58437 300.59078]] 95%% Error estimate [ASE units]: [[ 24325.9807 44848.01912 11626.52502 37199.2211 1542.53424 5444.9896 ] [ 44848.01912 287827.11323 15125.7732 8666.35367 5924.72422 75786.44953] [ 11626.52502 15125.7732 53834.94263 70514.63872 14175.84145 6753.9046 ] [ 37199.2211 8666.35367 70514.63872 4878.42303 4159.6684 3934.98152] [ 1542.53424 5924.72422 14175.84145 4159.6684 41039.97715 2741.82838] [ 5444.9896 75786.44953 6753.9046 3934.98152 2741.82838 9125.8765 ]] Relative norm of error estimate: 2.169395497265186 Relative norm of deviation from material symmetry: 0.7807342960940171 Summary of completed elastic constants calculation: Method: stress-condensed Step generator: MaxStepGenerator(_base_step=0.0001,_step_nom=None,_num_steps=14,_step_ratio=1.6,offset=0,num_extrap=9,check_num_steps=True,use_exact_steps=True,_scale=500,_state=State(x=array([0., 0., 0., 0., 0., 0.]), method='central', n=1, order=2)) Raw elastic constants [ASE units]: [[ -0.05382 0.15221 -1.41455 14.6062 -3.44726 -2.61762] [ 0.15221 -27.74357 1.80402 34.54477 -12.99195 -5.98022] [ -1.41455 1.80402 -1.46517 -2.65479 -1.50561 2.0215 ] [ 14.6062 34.54477 -2.65479 -23.63426 0.36518 1.06797] [ -3.44726 -12.99195 -1.50561 0.36518 -0.48076 -0.38779] [ -2.61762 -5.98022 2.0215 1.06797 -0.38779 8.69558]] 95%% Error estimate [ASE units]: [[ 23.63116 78.66379 34.76134 17.54925 32.53232 17.15587] [ 78.66379 532.29485 53.6379 50.82006 104.3018 89.76635] [ 34.76134 53.6379 7.72567 8.25973 11.09585 10.12764] [ 17.54925 50.82006 8.25973 33.93504 2.34281 52.49636] [ 32.53232 104.3018 11.09585 2.34281 5.15178 2.18173] [ 17.15587 89.76635 10.12764 52.49636 2.18173 128.91262]] Relative norm of error estimate: 7.045786682813415 Relative norm of deviation from material symmetry: 0.7681180241855566 Summary of completed elastic constants calculation: Method: stress-condensed Step generator: MaxStepGenerator(_base_step=0.001,_step_nom=None,_num_steps=14,_step_ratio=1.6,offset=0,num_extrap=9,check_num_steps=True,use_exact_steps=True,_scale=500,_state=State(x=array([0., 0., 0., 0., 0., 0.]), method='central', n=1, order=2)) Raw elastic constants [ASE units]: [[ 0.94383 -2.96144 0.61528 -0.90427 -2.38849 -0.19495] [ -2.96144 -24.30522 -2.53385 11.46716 -9.27199 -0.62953] [ 0.61528 -2.53385 0.6591 -1.69206 1.02744 0.0676 ] [ -0.90427 11.46716 -1.69206 2.74645 0.17372 0.2761 ] [ -2.38849 -9.27199 1.02744 0.17372 -0.70922 -0.01138] [ -0.19495 -0.62953 0.0676 0.2761 -0.01138 -3.88658]] 95%% Error estimate [ASE units]: [[ 3.01451 14.60041 13.0571 2.35974 1.8089 0.86332] [14.60041 23.90814 28.44995 10.59904 7.3902 4.06982] [13.0571 28.44995 10.54582 0.26026 1.12457 0.58037] [ 2.35974 10.59904 0.26026 3.21415 0.41867 10.74375] [ 1.8089 7.3902 1.12457 0.41867 0.82704 0.32299] [ 0.86332 4.06982 0.58037 10.74375 0.32299 11.59526]] Relative norm of error estimate: 1.8141355531040373 Relative norm of deviation from material symmetry: 0.5770073751832913 Summary of completed elastic constants calculation: Method: stress-condensed Step generator: MaxStepGenerator(_base_step=0.01,_step_nom=None,_num_steps=14,_step_ratio=1.6,offset=0,num_extrap=9,check_num_steps=True,use_exact_steps=True,_scale=500,_state=State(x=array([0., 0., 0., 0., 0., 0.]), method='central', n=1, order=2)) Raw elastic constants [ASE units]: [[ 0.6927 0.39707 0.47111 0.01042 0.01584 0.23368] [ 0.39707 0.94846 0.94133 0.05265 0.21569 1.0178 ] [ 0.47111 0.94133 0.82747 -0.0065 -0.02062 -0.1276 ] [ 0.01042 0.05265 -0.0065 0.18902 0.00412 -0.22523] [ 0.01584 0.21569 -0.02062 0.00412 0.19904 0.01537] [ 0.23368 1.0178 -0.1276 -0.22523 0.01537 -1.38596]] 95%% Error estimate [ASE units]: [[0.66233 1.24285 0.63615 0.16691 0.17682 0.41649] [1.24285 9.09361 2.64452 0.58736 0.73741 1.70326] [0.63615 2.64452 0.72465 0.0884 0.1756 0.21657] [0.16691 0.58736 0.0884 0.35899 0.02061 0.74356] [0.17682 0.73741 0.1756 0.02061 0.08928 0.03504] [0.41649 1.70326 0.21657 0.74356 0.03504 2.45129]] Relative norm of error estimate: 2.888654983076887 Relative norm of deviation from material symmetry: 0.5020934045725564 Summary of completed elastic constants calculation: Method: stress-condensed Step generator: MaxStepGenerator(_base_step=0.1,_step_nom=None,_num_steps=14,_step_ratio=1.6,offset=0,num_extrap=9,check_num_steps=True,use_exact_steps=True,_scale=500,_state=State(x=array([0., 0., 0., 0., 0., 0.]), method='central', n=1, order=2)) Raw elastic constants [ASE units]: [[ 0.70401 0.45169 0.42026 -0.00043 -0.02267 -0.00449] [ 0.45169 0.59983 0.30029 -0.00538 -0.02748 0.01181] [ 0.42026 0.30029 0.79588 -0.00052 0.02652 -0.00016] [-0.00043 -0.00538 -0.00052 0.16808 -0.00093 -0.0381 ] [-0.02267 -0.02748 0.02652 -0.00093 0.19002 -0.00002] [-0.00449 0.01181 -0.00016 -0.0381 -0.00002 -0.08131]] 95%% Error estimate [ASE units]: [[0.06425 0.1236 0.05353 0.01245 0.01579 0.02754] [0.1236 0.82986 0.35855 0.07208 0.09953 0.08982] [0.05353 0.35855 0.05014 0.00813 0.02379 0.01523] [0.01245 0.07208 0.00813 0.02896 0.00116 0.04429] [0.01579 0.09953 0.02379 0.00116 0.01696 0.00597] [0.02754 0.08982 0.01523 0.04429 0.00597 0.29725]] Relative norm of error estimate: 0.7315320861335763 Relative norm of deviation from material symmetry: 0.016701470978581094 Elastic constants calculation had a relative 95% uncertainty greater than 0.02 and/or relative deviation from material symmetry greater than 0.01. See stdout and logs for calculation details. The following run was chosen as having the lowest error: Method: energy-condensed Step generator: MaxStepGenerator(_base_step=0.0001,_step_nom=None,_num_steps=14,_step_ratio=1.6,offset=0,num_extrap=9,check_num_steps=True,use_exact_steps=True,_scale=500,_state=State(x=array([0., 0., 0., 0., 0., 0.]), method='central', n=2, order=2)) Raw elastic constants [ASE units]: [[ 73090.33545 -207720.06599 -5.28539 29813.89303 159862.17128 133250.4056 ] [ -207720.06599 309132.98127 -37498.02178 259338.02005 -367.13416 63174.47202] [ -5.28539 -37498.02178 -101425.76834 3323.80359 -105675.69986 -1287305.48476] [ 29813.89303 259338.02005 3323.80359 38624971.50519 184671.52872 -79625.06127] [ 159862.17128 -367.13416 -105675.69986 184671.52872 340091.92063 81.54926] [ 133250.4056 63174.47202 -1287305.48476 -79625.06127 81.54926 1903911.99531]] 95%% Error estimate [ASE units]: [[ 5579416.63785 2113421.99446 1836134.21342 385681.93961 650933.80035 1386659.75891] [ 2113421.99446 1282409.3655 6487356.3652 277756.21558 49087.06619 1472988.71385] [ 1836134.21342 6487356.3652 1446593.84588 3747839.20287 3809179.31674 1404218.49452] [ 385681.93961 277756.21558 3747839.20287 16312206.45441 509714.44028 198774.51443] [ 650933.80035 49087.06619 3809179.31674 509714.44028 237735.27539 862020.45957] [ 1386659.75891 1472988.71385 1404218.49452 198774.51443 862020.45957 1885121.96114]] Relative norm of error estimate: 0.4769997334313249 Relative norm of deviation from material symmetry: 0.03481611504262822 R E S U L T S Elastic constants [GPa]: [[ 1.17104e+07 -3.32804e+07 -8.46813e+02 4.77671e+06 2.56127e+07 2.13491e+07] [-3.32804e+07 4.95286e+07 -6.00785e+06 4.15505e+07 -5.88214e+04 1.01217e+07] [-8.46813e+02 -6.00785e+06 -1.62502e+07 5.32532e+05 -1.69311e+07 -2.06249e+08] [ 4.77671e+06 4.15505e+07 5.32532e+05 6.18840e+09 2.95876e+07 -1.27573e+07] [ 2.56127e+07 -5.88214e+04 -1.69311e+07 2.95876e+07 5.44887e+07 1.30656e+04] [ 2.13491e+07 1.01217e+07 -2.06249e+08 -1.27573e+07 1.30656e+04 3.05040e+08]] 95 %% Error estimate [GPa]: [[8.93921e+08 3.38608e+08 2.94181e+08 6.17931e+07 1.04291e+08 2.22167e+08] [3.38608e+08 2.05465e+08 1.03939e+09 4.45015e+07 7.86461e+06 2.35999e+08] [2.94181e+08 1.03939e+09 2.31770e+08 6.00470e+08 6.10298e+08 2.24981e+08] [6.17931e+07 4.45015e+07 6.00470e+08 2.61350e+09 8.16653e+07 3.18472e+07] [1.04291e+08 7.86461e+06 6.10298e+08 8.16653e+07 3.80894e+07 1.38111e+08] [2.22167e+08 2.35999e+08 2.24981e+08 3.18472e+07 1.38111e+08 3.02030e+08]] Bulk modulus [GPa] = -7251284.207600286 Unique elastic constants for space group 15 [GPa] ['c11', 'c12', 'c13', 'c15', 'c22', 'c23', 'c25', 'c33', 'c35', 'c44', 'c46', 'c55', 'c66'] [11710362.667172847, -33280423.340755086, -846.8132922354539, 25612743.33676014, 49528563.530528255, -6007845.381535218, -58821.3766105425, -16250199.47745275, -16931113.569778383, 6188402632.468641, -12757341.160349006, 54488732.41589006, 305040328.69439614] WARNING: Nearest isotropic state not computed.