# periodic boundary conditions along all three dimensions boundary p p p # Set neighbor skin variable neigh_skin equal 2.0*${_u_distance} variable neigh_skin equal 2.0*1 neighbor ${neigh_skin} bin neighbor 2 bin # create a supercell with cubic lattice (fcc, bcc, sc, or diamond) # using 10*10*10 conventional (orthogonal) unit cells variable latticeconst_converted equal 2.8755435347557072*${_u_distance} variable latticeconst_converted equal 2.8755435347557072*1 lattice bcc ${latticeconst_converted} lattice bcc 2.87554353475571 Lattice spacing in x,y,z = 2.8755435 2.8755435 2.8755435 region simbox block 0 10 0 10 0 10 units lattice create_box 1 simbox Created orthogonal box = (0 0 0) to (28.755435 28.755435 28.755435) 1 by 1 by 1 MPI processor grid create_atoms 1 box Created 2000 atoms using lattice units in orthogonal box = (0 0 0) to (28.755435 28.755435 28.755435) create_atoms CPU = 0.000 seconds variable mass_converted equal 51.9961*${_u_mass} variable mass_converted equal 51.9961*1 kim interactions Cr #=== BEGIN kim interactions ================================== pair_style kim Morse_Shifted_GirifalcoWeizer_1959HighCutoff_Cr__MO_859700307573_004 pair_coeff * * Cr #=== END kim interactions ==================================== mass 1 ${mass_converted} mass 1 51.9961 # initial volume variable v equal vol # assign formula variable V0 equal ${v} # evaluate initial value variable V0 equal 23777.1523866401 variable V0_metal equal ${V0}/(${_u_distance}*${_u_distance}*${_u_distance}) variable V0_metal equal 23777.1523866401/(${_u_distance}*${_u_distance}*${_u_distance}) variable V0_metal equal 23777.1523866401/(1*${_u_distance}*${_u_distance}) variable V0_metal equal 23777.1523866401/(1*1*${_u_distance}) variable V0_metal equal 23777.1523866401/(1*1*1) variable V0_metal_times1000 equal ${V0_metal}*1000 variable V0_metal_times1000 equal 23777.1523866401*1000 print "Initial system volume: ${V0_metal} Angstroms^3" Initial system volume: 23777.1523866401 Angstroms^3 # set the time step to 0.001 picoseconds variable timestep_converted equal 0.001*${_u_time} variable timestep_converted equal 0.001*1 timestep ${timestep_converted} timestep 0.001 variable temp_converted equal 293.15*${_u_temperature} variable temp_converted equal 293.15*1 variable Tdamp_converted equal 0.01*${_u_time} variable Tdamp_converted equal 0.01*1 variable press_converted equal 0.0*${_u_pressure} variable press_converted equal 0.0*1 variable Pdamp_converted equal 0.1*${_u_time} variable Pdamp_converted equal 0.1*1 # create initial velocities consistent with the chosen temperature velocity all create ${temp_converted} 17 mom yes rot yes velocity all create 293.15 17 mom yes rot yes # set NPT ensemble for all atoms fix ensemble all npt temp ${temp_converted} ${temp_converted} ${Tdamp_converted} iso ${press_converted} ${press_converted} ${Pdamp_converted} fix ensemble all npt temp 293.15 ${temp_converted} ${Tdamp_converted} iso ${press_converted} ${press_converted} ${Pdamp_converted} fix ensemble all npt temp 293.15 293.15 ${Tdamp_converted} iso ${press_converted} ${press_converted} ${Pdamp_converted} fix ensemble all npt temp 293.15 293.15 0.01 iso ${press_converted} ${press_converted} ${Pdamp_converted} fix ensemble all npt temp 293.15 293.15 0.01 iso 0 ${press_converted} ${Pdamp_converted} fix ensemble all npt temp 293.15 293.15 0.01 iso 0 0 ${Pdamp_converted} fix ensemble all npt temp 293.15 293.15 0.01 iso 0 0 0.1 # compute the time averages of pressure, temperature, and volume, respectively # ignore the first 5000 timesteps variable etotal_metal equal etotal/${_u_energy} variable etotal_metal equal etotal/1 variable pe_metal equal pe/${_u_energy} variable pe_metal equal pe/1 variable T_metal equal temp/${_u_temperature} variable T_metal equal temp/1 variable V_metal equal vol/(${_u_distance}*${_u_distance}*${_u_distance}) variable V_metal equal vol/(1*${_u_distance}*${_u_distance}) variable V_metal equal vol/(1*1*${_u_distance}) variable V_metal equal vol/(1*1*1) variable P_metal equal press/${_u_pressure} variable P_metal equal press/1 fix avgmyTemp all ave/time 5 20 100 v_T_metal ave running start 1000 fix avgmyPress all ave/time 5 20 100 v_P_metal ave running start 1000 fix avgmyVol all ave/time 5 20 100 v_V_metal ave running start 1000 # extract fix quantities into variables so they can be used in if-else logic later. variable T equal f_avgmyTemp variable P equal f_avgmyPress variable V equal f_avgmyVol # set error bounds for temperature and pressure in original metal units (K and bar) variable T_low equal "293.15 - 1.0" variable T_up equal "293.15 + 1.0" variable P_low equal "0.0 - 5.0" variable P_up equal "0.0 + 5.0" # print to logfile every 1000 timesteps thermo_style custom step etotal v_etotal_metal pe v_pe_metal temp v_T_metal vol v_V_metal press v_P_metal thermo 1000 # Run a simulation for at most 2000*1000 timesteps. At each 1000th time step, check # whether the temperature and pressure have converged. If yes, break. label top variable a loop 2000 run 1000 CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE Your simulation uses code contributions which should be cited: - OpenKIM Project: doi:10.1007/s11837-011-0102-6 @Article{tadmor:elliott:2011, author = {E. B. Tadmor and R. S. Elliott and J. P. Sethna and R. E. Miller and C. A. Becker}, title = {The potential of atomistic simulations and the {K}nowledgebase of {I}nteratomic {M}odels}, journal = {{JOM}}, year = 2011, volume = 63, number = 17, pages = {17}, doi = {10.1007/s11837-011-0102-6} } - OpenKIM potential: https://openkim.org/cite/MO_859700307573_004#item-citation CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE Generated 0 of 0 mixed pair_coeff terms from geometric mixing rule Neighbor list info ... update: every = 1 steps, delay = 0 steps, check = yes max neighbors/atom: 2000, page size: 100000 master list distance cutoff = 11.05351 ghost atom cutoff = 11.05351 binsize = 5.526755, bins = 6 6 6 1 neighbor lists, perpetual/occasional/extra = 1 0 0 (1) pair kim, perpetual attributes: full, newton off pair build: full/bin/atomonly stencil: full/bin/3d bin: standard Per MPI rank memory allocation (min/avg/max) = 7.422 | 7.422 | 7.422 Mbytes Step TotEng v_etotal_metal PotEng v_pe_metal Temp v_T_metal Volume v_V_metal Press v_P_metal 0 -7673.1205 -7673.1205 -7748.8679 -7748.8679 293.15 293.15 23777.152 23777.152 3402.7685 3402.7685 1000 -7594.6931 -7594.6931 -7671.9727 -7671.9727 299.08011 299.08011 23997.619 23997.619 -1164.5379 -1164.5379 Loop time of 13.3891 on 1 procs for 1000 steps with 2000 atoms Performance: 6.453 ns/day, 3.719 hours/ns, 74.687 timesteps/s, 149.375 katom-step/s 99.4% CPU use with 1 MPI tasks x 1 OpenMP threads MPI task timing breakdown: Section | min time | avg time | max time |%varavg| %total --------------------------------------------------------------- Pair | 13.283 | 13.283 | 13.283 | 0.0 | 99.21 Neigh | 0 | 0 | 0 | 0.0 | 0.00 Comm | 0.031379 | 0.031379 | 0.031379 | 0.0 | 0.23 Output | 0.00010794 | 0.00010794 | 0.00010794 | 0.0 | 0.00 Modify | 0.064692 | 0.064692 | 0.064692 | 0.0 | 0.48 Other | | 0.009541 | | | 0.07 Nlocal: 2000 ave 2000 max 2000 min Histogram: 1 0 0 0 0 0 0 0 0 0 Nghost: 8745 ave 8745 max 8745 min Histogram: 1 0 0 0 0 0 0 0 0 0 Neighs: 0 ave 0 max 0 min Histogram: 1 0 0 0 0 0 0 0 0 0 FullNghs: 1.06e+06 ave 1.06e+06 max 1.06e+06 min Histogram: 1 0 0 0 0 0 0 0 0 0 Total # of neighbors = 1060000 Ave neighs/atom = 530 Neighbor list builds = 0 Dangerous builds = 0 if "${V_metal}>${V0_metal_times1000}" then "jump SELF unstable" if "${T}>${T_low} && ${T}<${T_up} && ${P}>${P_low} && ${P}<${P_up}" then "jump SELF break" print "flag: Temp = ${T}, Press = ${P}" flag: Temp = 294.098233615248, Press = -61.1146217573927 next a jump SELF top variable a loop 2000 run 1000 Generated 0 of 0 mixed pair_coeff terms from geometric mixing rule Neighbor list info ... update: every = 1 steps, delay = 0 steps, check = yes max neighbors/atom: 2000, page size: 100000 master list distance cutoff = 11.05351 ghost atom cutoff = 11.05351 binsize = 5.526755, bins = 6 6 6 1 neighbor lists, perpetual/occasional/extra = 1 0 0 (1) pair kim, perpetual attributes: full, newton off pair build: full/bin/atomonly stencil: full/bin/3d bin: standard Per MPI rank memory allocation (min/avg/max) = 7.045 | 7.045 | 7.045 Mbytes Step TotEng v_etotal_metal PotEng v_pe_metal Temp v_T_metal Volume v_V_metal Press v_P_metal 1000 -7594.6931 -7594.6931 -7671.9727 -7671.9727 299.08011 299.08011 23997.619 23997.619 -1164.5379 -1164.5379 2000 -7595.5368 -7595.5368 -7672.6478 -7672.6478 298.42772 298.42772 23965.886 23965.886 1151.6601 1151.6601 Loop time of 12.8375 on 1 procs for 1000 steps with 2000 atoms Performance: 6.730 ns/day, 3.566 hours/ns, 77.897 timesteps/s, 155.793 katom-step/s 99.9% CPU use with 1 MPI tasks x 1 OpenMP threads MPI task timing breakdown: Section | min time | avg time | max time |%varavg| %total --------------------------------------------------------------- Pair | 12.733 | 12.733 | 12.733 | 0.0 | 99.19 Neigh | 0 | 0 | 0 | 0.0 | 0.00 Comm | 0.029991 | 0.029991 | 0.029991 | 0.0 | 0.23 Output | 0.0001275 | 0.0001275 | 0.0001275 | 0.0 | 0.00 Modify | 0.064905 | 0.064905 | 0.064905 | 0.0 | 0.51 Other | | 0.009068 | | | 0.07 Nlocal: 2000 ave 2000 max 2000 min Histogram: 1 0 0 0 0 0 0 0 0 0 Nghost: 8745 ave 8745 max 8745 min Histogram: 1 0 0 0 0 0 0 0 0 0 Neighs: 0 ave 0 max 0 min Histogram: 1 0 0 0 0 0 0 0 0 0 FullNghs: 974828 ave 974828 max 974828 min Histogram: 1 0 0 0 0 0 0 0 0 0 Total # of neighbors = 974828 Ave neighs/atom = 487.414 Neighbor list builds = 0 Dangerous builds = 0 if "${V_metal}>${V0_metal_times1000}" then "jump SELF unstable" if "${T}>${T_low} && ${T}<${T_up} && ${P}>${P_low} && ${P}<${P_up}" then "jump SELF break" jump SELF break # Write final averaged volume to file if temperature and volume have converged; otherwise wirte a # flag to indicate non-convergence. variable myStep equal step if "${myStep} < 2000000" then "print '${V}' file output/vol_T293.15.out" else "print 'not_converged' file output/vol_T293.15.out" print '${V}' file output/vol_T293.15.out 23978.9709086509 print "LAMMPS calculation completed" LAMMPS calculation completed quit 0