# periodic boundary conditions along all three dimensions boundary p p p # Set neighbor skin variable neigh_skin equal 2.0*${_u_distance} variable neigh_skin equal 2.0*1 neighbor ${neigh_skin} bin neighbor 2 bin # create a supercell with cubic lattice (fcc, bcc, sc, or diamond) # using 10*10*10 conventional (orthogonal) unit cells variable latticeconst_converted equal 3.622655242681504*${_u_distance} variable latticeconst_converted equal 3.622655242681504*1 lattice diamond ${latticeconst_converted} lattice diamond 3.6226552426815 Lattice spacing in x,y,z = 3.6226552 3.6226552 3.6226552 region simbox block 0 10 0 10 0 10 units lattice create_box 1 simbox Created orthogonal box = (0.0000000 0.0000000 0.0000000) to (36.226552 36.226552 36.226552) 1 by 1 by 1 MPI processor grid create_atoms 1 box Created 8000 atoms create_atoms CPU = 0.001 seconds variable mass_converted equal 12.0107*${_u_mass} variable mass_converted equal 12.0107*1 kim_interactions C WARNING: 'kim_' has been renamed to 'kim '. Please update your input. kim interactions C #=== BEGIN kim interactions ================================== variable kim_update equal 0 variable kim_periodic equal 1 pair_style reax/c NULL lgvdw yes safezone 10 mincap 100 pair_coeff * * /tmp/kim-shared-library-parameter-file-directory-XXXXXXcZfzMT/ffield.reax.PHCO.Preliminary C fix reaxqeq all qeq/reax 1 0.0 10.0 1.0e-6 reax/c #=== END kim interactions ==================================== mass 1 ${mass_converted} mass 1 12.0107 # initial volume variable v equal vol # assign formula variable V0 equal ${v} # evaluate initial value variable V0 equal 47542.3906717134 variable V0_metal equal ${V0}/(${_u_distance}*${_u_distance}*${_u_distance}) variable V0_metal equal 47542.3906717134/(${_u_distance}*${_u_distance}*${_u_distance}) variable V0_metal equal 47542.3906717134/(1*${_u_distance}*${_u_distance}) variable V0_metal equal 47542.3906717134/(1*1*${_u_distance}) variable V0_metal equal 47542.3906717134/(1*1*1) variable V0_metal_times1000 equal ${V0_metal}*1000 variable V0_metal_times1000 equal 47542.3906717134*1000 print "Initial system volume: ${V0_metal} Angstroms^3" Initial system volume: 47542.3906717134 Angstroms^3 # set the time step to 0.001 picoseconds variable timestep_converted equal 0.001*${_u_time} variable timestep_converted equal 0.001*1000 timestep ${timestep_converted} timestep 1 variable temp_converted equal 253.15*${_u_temperature} variable temp_converted equal 253.15*1 variable Tdamp_converted equal 0.1*${_u_time} variable Tdamp_converted equal 0.1*1000 variable press_converted equal 0.0*${_u_pressure} variable press_converted equal 0.0*0.986923266716013 variable Pdamp_converted equal 1*${_u_time} variable Pdamp_converted equal 1*1000 # create initial velocities consistent with the chosen temperature velocity all create ${temp_converted} 17 mom yes rot yes velocity all create 253.15 17 mom yes rot yes # set NPT ensemble for all atoms fix ensemble all npt temp ${temp_converted} ${temp_converted} ${Tdamp_converted} iso ${press_converted} ${press_converted} ${Pdamp_converted} fix ensemble all npt temp 253.15 ${temp_converted} ${Tdamp_converted} iso ${press_converted} ${press_converted} ${Pdamp_converted} fix ensemble all npt temp 253.15 253.15 ${Tdamp_converted} iso ${press_converted} ${press_converted} ${Pdamp_converted} fix ensemble all npt temp 253.15 253.15 100 iso ${press_converted} ${press_converted} ${Pdamp_converted} fix ensemble all npt temp 253.15 253.15 100 iso 0 ${press_converted} ${Pdamp_converted} fix ensemble all npt temp 253.15 253.15 100 iso 0 0 ${Pdamp_converted} fix ensemble all npt temp 253.15 253.15 100 iso 0 0 1000 # compute the time averages of pressure, temperature, and volume, respectively # ignore the first 5000 timesteps var