# periodic boundary conditions along all three dimensions boundary p p p # Set neighbor skin variable neigh_skin equal 2.0*${_u_distance} variable neigh_skin equal 2.0*1 neighbor ${neigh_skin} bin neighbor 2 bin # create a supercell with cubic lattice (fcc, bcc, sc, or diamond) # using 10*10*10 conventional (orthogonal) unit cells variable latticeconst_converted equal 3.55671726167202*${_u_distance} variable latticeconst_converted equal 3.55671726167202*1 lattice diamond ${latticeconst_converted} lattice diamond 3.55671726167202 Lattice spacing in x,y,z = 3.5567173 3.5567173 3.5567173 region simbox block 0 10 0 10 0 10 units lattice create_box 1 simbox Created orthogonal box = (0 0 0) to (35.567173 35.567173 35.567173) 1 by 1 by 1 MPI processor grid create_atoms 1 box Created 8000 atoms using lattice units in orthogonal box = (0 0 0) to (35.567173 35.567173 35.567173) create_atoms CPU = 0.001 seconds variable mass_converted equal 12.0107*${_u_mass} variable mass_converted equal 12.0107*1 kim interactions C #=== BEGIN kim interactions ================================== variable kim_update equal 0 variable kim_periodic equal 1 pair_style airebo 3.0 1 1 pair_coeff * * /tmp/kim-shared-library-parameter-file-directory-XXXXXX5SNE11/CH.airebo C Reading airebo potential file /tmp/kim-shared-library-parameter-file-directory-XXXXXX5SNE11/CH.airebo with DATE: 2011-10-25 #=== END kim interactions ==================================== mass 1 ${mass_converted} mass 1 12.0107 # initial volume variable v equal vol # assign formula variable V0 equal ${v} # evaluate initial value variable V0 equal 44993.3187188451 variable V0_metal equal ${V0}/(${_u_distance}*${_u_distance}*${_u_distance}) variable V0_metal equal 44993.3187188451/(${_u_distance}*${_u_distance}*${_u_distance}) variable V0_metal equal 44993.3187188451/(1*${_u_distance}*${_u_distance}) variable V0_metal equal 44993.3187188451/(1*1*${_u_distance}) variable V0_metal equal 44993.3187188451/(1*1*1) variable V0_metal_times1000 equal ${V0_metal}*1000 variable V0_metal_times1000 equal 44993.3187188451*1000 print "Initial system volume: ${V0_metal} Angstroms^3" Initial system volume: 44993.3187188451 Angstroms^3 # set the time step to 0.001 picoseconds variable timestep_converted equal 0.001*${_u_time} variable timestep_converted equal 0.001*1 timestep ${timestep_converted} timestep 0.001 variable temp_converted equal 333.15*${_u_temperature} variable temp_converted equal 333.15*1 variable Tdamp_converted equal 0.01*${_u_time} variable Tdamp_converted equal 0.01*1 variable press_converted equal 0.0*${_u_pressure} variable press_converted equal 0.0*1 variable Pdamp_converted equal 0.1*${_u_time} variable Pdamp_converted equal 0.1*1 # create initial velocities consistent with the chosen temperature velocity all create ${temp_converted} 17 mom yes rot yes velocity all create 333.15 17 mom yes rot yes # set NPT ensemble for all atoms fix ensemble all npt temp ${temp_converted} ${temp_converted} ${Tdamp_converted} iso ${press_converted} ${press_converted} ${Pdamp_converted} fix ensemble all npt temp 333.15 ${temp_converted} ${Tdamp_converted} iso ${press_converted} ${press_converted} ${Pdamp_converted} fix ensemble all npt temp 333.15 333.15 ${Tdamp_converted} iso ${press_converted} ${press_converted} ${Pdamp_converted} fix ensemble all npt temp 333.15 333.15 0.01 iso ${press_converted} ${press_converted} ${Pdamp_converted} fix ensemble all npt temp 333.15 333.15 0.01 iso 0 ${press_converted} ${Pdamp_converted} fix ensemble all npt temp 333.15 333.15 0.01 iso 0 0 ${Pdamp_converted} fix ensemble all npt temp 333.15 333.15 0.01 iso 0 0 0.1 # compute the time averages of pressure, temperature, and volume, respectively # ignore the first 5000 timesteps variable etotal_metal equal etotal/${_u_energy} variable etotal_metal equal etotal/1 variable pe_metal equal pe/${_u_energy} variable pe_metal equal pe/1 variable T_metal equal temp/${_u_temperature} variable T_metal equal temp/1 variable V_metal equal vol/(${_u_distance}*${_u_distance}*${_u_distance}) variable V_metal equal vol/(1*${_u_distance}*${_u_distance}) variable V_metal equal vol/(1*1*${_u_distance}) variable V_metal equal vol/(1*1*1) variable P_metal equal press/${_u_pressure} variable P_metal equal press/1 fix avgmyTemp all ave/time 5 20 100 v_T_metal ave running start 1000 fix avgmyPress all ave/time 5 20 100 v_P_metal ave running start 1000 fix avgmyVol all ave/time 5 20 100 v_V_metal ave running start 1000 # extract fix quantities into variables so they can be used in if-else logic later. variable T equal f_avgmyTemp variable P equal f_avgmyPress variable V equal f_avgmyVol # set error bounds for temperature and pressure in original metal units (K and bar) variable T_low equal "333.15 - 1.0" variable T_up equal "333.15 + 1.0" variable P_low equal "0.0 - 5.0" variable P_up equal "0.0 + 5.0" # print to logfile every 1000 timesteps thermo_style custom step etotal v_etotal_metal pe v_pe_metal temp v_T_metal vol v_V_metal press v_P_metal thermo 1000 # Run a simulation for at most 2000*1000 timesteps. At each 1000th time step, check # whether the temperature and pressure have converged. If yes, break. label top variable a loop 2000 run 1000 CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE Your simulation uses code contributions which should be cited: - OpenKIM Project: doi:10.1007/s11837-011-0102-6 @Article{tadmor:elliott:2011, author = {E. B. Tadmor and R. S. Elliott and J. P. Sethna and R. E. Miller and C. A. Becker}, title = {The potential of atomistic simulations and the {K}nowledgebase of {I}nteratomic {M}odels}, journal = {{JOM}}, year = 2011, volume = 63, number = 17, pages = {17}, doi = {10.1007/s11837-011-0102-6} } - OpenKIM potential: https://openkim.org/cite/SM_069621990420_000#item-citation CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE Neighbor list info ... update: every = 1 steps, delay = 0 steps, check = yes max neighbors/atom: 4000, page size: 100000 master list distance cutoff = 12.2 ghost atom cutoff = 12.2 binsize = 6.1, bins = 6 6 6 1 neighbor lists, perpetual/occasional/extra = 1 0 0 (1) pair airebo, perpetual attributes: full, newton on, ghost pair build: full/bin/ghost stencil: full/ghost/bin/3d bin: standard Per MPI rank memory allocation (min/avg/max) = 59.29 | 59.29 | 59.29 Mbytes Step TotEng v_etotal_metal PotEng v_pe_metal Temp v_T_metal Volume v_V_metal Press v_P_metal 0 -59300.071 -59300.071 -59644.532 -59644.532 333.15 333.15 44993.319 44993.319 8177.6458 8177.6458 1000 -58935.609 -58935.609 -59277.672 -59277.672 330.8307 330.8307 45299.379 45299.379 2178.6726 2178.6726 Loop time of 339.385 on 1 procs for 1000 steps with 8000 atoms Performance: 0.255 ns/day, 94.274 hours/ns, 2.947 timesteps/s, 23.572 katom-step/s 99.5% CPU use with 1 MPI tasks x 1 OpenMP threads MPI task timing breakdown: Section | min time | avg time | max time |%varavg| %total --------------------------------------------------------------- Pair | 338.94 | 338.94 | 338.94 | 0.0 | 99.87 Neigh | 0 | 0 | 0 | 0.0 | 0.00 Comm | 0.11481 | 0.11481 | 0.11481 | 0.0 | 0.03 Output | 0.00010211 | 0.00010211 | 0.00010211 | 0.0 | 0.00 Modify | 0.28793 | 0.28793 | 0.28793 | 0.0 | 0.08 Other | | 0.04253 | | | 0.01 Nlocal: 8000 ave 8000 max 8000 min Histogram: 1 0 0 0 0 0 0 0 0 0 Nghost: 29621 ave 29621 max 29621 min Histogram: 1 0 0 0 0 0 0 0 0 0 Neighs: 0 ave 0 max 0 min Histogram: 1 0 0 0 0 0 0 0 0 0 FullNghs: 1.0896e+07 ave 1.0896e+07 max 1.0896e+07 min Histogram: 1 0 0 0 0 0 0 0 0 0 Total # of neighbors = 10896000 Ave neighs/atom = 1362 Neighbor list builds = 0 Dangerous builds = 0 if "${V_metal}>${V0_metal_times1000}" then "jump SELF unstable" if "${T}>${T_low} && ${T}<${T_up} && ${P}>${P_low} && ${P}<${P_up}" then "jump SELF break" print "flag: Temp = ${T}, Press = ${P}" flag: Temp = 333.211847628196, Press = 176.119980775709 next a jump SELF top variable a loop 2000 run 1000 Per MPI rank memory allocation (min/avg/max) = 59.29 | 59.29 | 59.29 Mbytes Step TotEng v_etotal_metal PotEng v_pe_metal Temp v_T_metal Volume v_V_metal Press v_P_metal 1000 -58935.609 -58935.609 -59277.672 -59277.672 330.8307 330.8307 45299.379 45299.379 2178.6726 2178.6726 2000 -58934.015 -58934.015 -59275.018 -59275.018 329.80495 329.80495 45291.051 45291.051 3021.3898 3021.3898 Loop time of 331.1 on 1 procs for 1000 steps with 8000 atoms Performance: 0.261 ns/day, 91.972 hours/ns, 3.020 timesteps/s, 24.162 katom-step/s 99.6% CPU use with 1 MPI tasks x 1 OpenMP threads MPI task timing breakdown: Section | min time | avg time | max time |%varavg| %total --------------------------------------------------------------- Pair | 330.68 | 330.68 | 330.68 | 0.0 | 99.87 Neigh | 0 | 0 | 0 | 0.0 | 0.00 Comm | 0.10815 | 0.10815 | 0.10815 | 0.0 | 0.03 Output | 0.0001013 | 0.0001013 | 0.0001013 | 0.0 | 0.00 Modify | 0.2773 | 0.2773 | 0.2773 | 0.0 | 0.08 Other | | 0.03877 | | | 0.01 Nlocal: 8000 ave 8000 max 8000 min Histogram: 1 0 0 0 0 0 0 0 0 0 Nghost: 29621 ave 29621 max 29621 min Histogram: 1 0 0 0 0 0 0 0 0 0 Neighs: 0 ave 0 max 0 min Histogram: 1 0 0 0 0 0 0 0 0 0 FullNghs: 1.08249e+07 ave 1.08249e+07 max 1.08249e+07 min Histogram: 1 0 0 0 0 0 0 0 0 0 Total # of neighbors = 10824924 Ave neighs/atom = 1353.1155 Neighbor list builds = 0 Dangerous builds = 0 if "${V_metal}>${V0_metal_times1000}" then "jump SELF unstable" if "${T}>${T_low} && ${T}<${T_up} && ${P}>${P_low} && ${P}<${P_up}" then "jump SELF break" jump SELF break # Write final averaged volume to file if temperature and volume have converged; otherwise wirte a # flag to indicate non-convergence. variable myStep equal step if "${myStep} < 2000000" then "print '${V}' file output/vol_T333.15.out" else "print 'not_converged' file output/vol_T333.15.out" print '${V}' file output/vol_T333.15.out 45316.6807087016 print "LAMMPS calculation completed" LAMMPS calculation completed quit 0