kim_init Sim_LAMMPS_ReaxFF_BrugnoliMiyataniAkaji_SiCeNaClHO_2023__SM_282799919035_000 metal unit_conversion_mode # Isolated atom energy for this species in eV (computed in a separate LAMMPS calculation) variable isolated_atom_energy equal -4.49926942446558e-07 # Define looping variables variable loopcount loop 54 variable latticeconst index 19.984000 18.645005 17.815149 17.212215 16.738381 16.347996 16.016021 15.727232 15.471674 15.242483 15.034723 14.844728 14.669696 14.507442 14.356227 14.214644 14.081539 13.955953 13.837083 13.724246 13.616859 13.514421 13.416495 13.322700 13.227877 13.130161 13.029371 12.925306 12.817746 12.706450 12.591147 12.471538 12.347290 12.218027 12.083328 11.942716 11.795648 11.641501 11.479560 11.308995 11.128835 10.937935 10.734935 10.518195 10.285720 10.035044 9.763075 9.465855 9.138211 8.773199 8.361182 7.888240 7.333176 6.661350 # Periodic boundary conditions along all three dimensions boundary p p p neigh_modify one 4000 # Create a diamond lattice using a single conventional (orthogonal) unit # cell with a lattice constant from the 'latticeconst' variable defined on line 15 above variable latticeconst_converted equal ${latticeconst}*${_u_distance} lattice diamond ${latticeconst_converted} region box block 0 1 0 1 0 1 units lattice create_box 1 box create_atoms 1 box mass 1 1.0 # Mass inconsequential since we're not performing time integration kim_interactions Cl # Variables used to rescale the box parameters, positions and forces so that the # quantities in the thermo output and dumpfile are in the original metal units # (Angstroms and eV/Angstrom) even if we're running with a Simulator Model that uses # different units variable pe_metal equal "c_thermo_pe/v__u_energy" variable xlo_metal equal xlo/${_u_distance} variable xhi_metal equal xhi/${_u_distance} variable ylo_metal equal ylo/${_u_distance} variable yhi_metal equal yhi/${_u_distance} variable zlo_metal equal zlo/${_u_distance} variable zhi_metal equal zhi/${_u_distance} variable xy_metal equal xy/${_u_distance} variable xz_metal equal xz/${_u_distance} variable yz_metal equal yz/${_u_distance} variable press_metal equal "c_thermo_press/v__u_pressure" variable pxx_metal equal pxx/${_u_pressure} variable pyy_metal equal pyy/${_u_pressure} variable pzz_metal equal pzz/${_u_pressure} variable pxy_metal equal pxy/${_u_pressure} variable pxz_metal equal pxz/${_u_pressure} variable pyz_metal equal pyz/${_u_pressure} variable x_metal atom x/${_u_distance} variable y_metal atom y/${_u_distance} variable z_metal atom z/${_u_distance} variable fx_metal atom fx/${_u_force} variable fy_metal atom fy/${_u_force} variable fz_metal atom fz/${_u_force} # Set what thermodynamic information to print to log thermo_style custom step atoms v_xlo_metal v_xhi_metal v_ylo_metal v_yhi_metal v_zlo_metal v_zhi_metal & v_pe_metal press v_press_metal v_pxx_metal v_pyy_metal v_pzz_metal & v_pxy_metal v_pxz_metal v_pyz_metal thermo 10 # Print every 10 steps # Set what information to write to dump file dump dumpid all custom 10 output/lammps.dump id type v_x_metal v_y_metal v_z_metal & v_fx_metal v_fy_metal v_fz_metal dump_modify dumpid format line "%d %d %16.7f %16.7f %16.7f %16.7f %16.7f %16.7f" # Compute the energy and forces for this lattice spacing run 0 # Calculate cohesive energy variable natoms equal "count(all)" variable ecohesive equal "v_pe_metal/v_natoms - v_isolated_atom_energy" # Output cohesive energy and equilibrium lattice constant print "Cohesive energy: ${ecohesive} eV/atom" # Queue next loop clear # Clear existing atoms, variables, and allocated memory next latticeconst # Increment latticeconst to next value next loopcount # Increment loopcount to next value jump SELF # Reload this input script with the new variable values