# periodic boundary conditions along all three dimensions boundary p p p # Set neighbor skin variable neigh_skin equal 2.0*${_u_distance} variable neigh_skin equal 2.0*1 neighbor ${neigh_skin} bin neighbor 2 bin # create a supercell with cubic lattice (fcc, bcc, sc, or diamond) # using 10*10*10 conventional (orthogonal) unit cells variable latticeconst_converted equal 5.355957195162773*${_u_distance} variable latticeconst_converted equal 5.355957195162773*1 lattice diamond ${latticeconst_converted} lattice diamond 5.35595719516277 Lattice spacing in x,y,z = 5.3559572 5.3559572 5.3559572 region simbox block 0 10 0 10 0 10 units lattice create_box 1 simbox Created orthogonal box = (0 0 0) to (53.559572 53.559572 53.559572) 1 by 1 by 1 MPI processor grid create_atoms 1 box Created 8000 atoms using lattice units in orthogonal box = (0 0 0) to (53.559572 53.559572 53.559572) create_atoms CPU = 0.001 seconds variable mass_converted equal 28.0855*${_u_mass} variable mass_converted equal 28.0855*1 kim interactions Si #=== BEGIN kim interactions ================================== variable kim_update equal 0 variable kim_periodic equal 1 pair_style reaxff NULL mincap 200 safezone 2 pair_coeff * * /tmp/kim-shared-library-parameter-file-directory-XXXXXXjemWns/ReaxFF_HOSiCeNaCl.txt Si WARNING: Van der Waals parameters for element SI indicate inner wall+shielding, but earlier atoms indicate a different van der Waals method. This may cause division-by-zero errors. Keeping van der Waals setting for earlier atoms. (src/REAXFF/reaxff_ffield.cpp:251) WARNING: Changed valency_val to valency_boc for X (src/REAXFF/reaxff_ffield.cpp:296) fix reaxqeq all qeq/reaxff 1 0.0 10.0 1.0e-6 reaxff #=== END kim interactions ==================================== mass 1 ${mass_converted} mass 1 28.0855 # initial volume variable v equal vol # assign formula variable V0 equal ${v} # evaluate initial value variable V0 equal 153642.474252245 variable V0_metal equal ${V0}/(${_u_distance}*${_u_distance}*${_u_distance}) variable V0_metal equal 153642.474252245/(${_u_distance}*${_u_distance}*${_u_distance}) variable V0_metal equal 153642.474252245/(1*${_u_distance}*${_u_distance}) variable V0_metal equal 153642.474252245/(1*1*${_u_distance}) variable V0_metal equal 153642.474252245/(1*1*1) variable V0_metal_times1000 equal ${V0_metal}*1000 variable V0_metal_times1000 equal 153642.474252245*1000 print "Initial system volume: ${V0_metal} Angstroms^3" Initial system volume: 153642.474252245 Angstroms^3 # set the time step to 0.001 picoseconds variable timestep_converted equal 0.001*${_u_time} variable timestep_converted equal 0.001*1000 timestep ${timestep_converted} timestep 1 variable temp_converted equal 293.15*${_u_temperature} variable temp_converted equal 293.15*1 variable Tdamp_converted equal 0.01*${_u_time} variable Tdamp_converted equal 0.01*1000 variable press_converted equal 0.0*${_u_pressure} variable press_converted equal 0.0*0.986923266716013 variable Pdamp_converted equal 0.1*${_u_time} variable Pdamp_converted equal 0.1*1000 # create initial velocities consistent with the chosen temperature velocity all create ${temp_converted} 17 mom yes rot yes velocity all create 293.15 17 mom yes rot yes # set NPT ensemble for all atoms fix ensemble all npt temp ${temp_converted} ${temp_converted} ${Tdamp_converted} iso ${press_converted} ${press_converted} ${Pdamp_converted} fix ensemble all npt temp 293.15 ${temp_converted} ${Tdamp_converted} iso ${press_converted} ${press_converted} ${Pdamp_converted} fix ensemble all npt temp 293.15 293.15 ${Tdamp_converted} iso ${press_converted} ${press_converted} ${Pdamp_converted} fix ensemble all npt temp 293.15 293.15 10 iso ${press_converted} ${press_converted} ${Pdamp_converted} fix ensemble all npt temp 293.15 293.15 10 iso 0 ${press_converted} ${Pdamp_converted} fix ensemble all npt temp 293.15 293.15 10 iso 0 0 ${Pdamp_converted} fix ensemble all npt temp 293.15 293.15 10 iso 0 0 100 # compute the time averages of pressure, temperature, and volume, respectively # ignore the first 5000 timesteps variable etotal_metal equal etotal/${_u_energy} variable etotal_metal equal etotal/23.0605480120695 variable pe_metal equal pe/${_u_energy} variable pe_metal equal pe/23.0605480120695 variable T_metal equal temp/${_u_temperature} variable T_metal equal temp/1 variable V_metal equal vol/(${_u_distance}*${_u_distance}*${_u_distance}) variable V_metal equal vol/(1*${_u_distance}*${_u_distance}) variable V_metal equal vol/(1*1*${_u_distance}) variable V_metal equal vol/(1*1*1) variable P_metal equal press/${_u_pressure} variable P_metal equal press/0.986923266716013 fix avgmyTemp all ave/time 5 20 100 v_T_metal ave running start 1000 fix avgmyPress all ave/time 5 20 100 v_P_metal ave running start 1000 fix avgmyVol all ave/time 5 20 100 v_V_metal ave running start 1000 # extract fix quantities into variables so they can be used in if-else logic later. variable T equal f_avgmyTemp variable P equal f_avgmyPress variable V equal f_avgmyVol # set error bounds for temperature and pressure in original metal units (K and bar) variable T_low equal "293.15 - 1.0" variable T_up equal "293.15 + 1.0" variable P_low equal "0.0 - 5.0" variable P_up equal "0.0 + 5.0" # print to logfile every 1000 timesteps thermo_style custom step etotal v_etotal_metal pe v_pe_metal temp v_T_metal vol v_V_metal press v_P_metal thermo 1000 # Run a simulation for at most 2000*1000 timesteps. At each 1000th time step, check # whether the temperature and pressure have converged. If yes, break. label top variable a loop 2000 run 1000 CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE Your simulation uses code contributions which should be cited: - OpenKIM Project: doi:10.1007/s11837-011-0102-6 @Article{tadmor:elliott:2011, author = {E. B. Tadmor and R. S. Elliott and J. P. Sethna and R. E. Miller and C. A. Becker}, title = {The potential of atomistic simulations and the {K}nowledgebase of {I}nteratomic {M}odels}, journal = {{JOM}}, year = 2011, volume = 63, number = 17, pages = {17}, doi = {10.1007/s11837-011-0102-6} } - OpenKIM potential: https://openkim.org/cite/SM_282799919035_000#item-citation - pair reaxff command: doi:10.1016/j.parco.2011.08.005 @Article{Aktulga12, author = {H. M. Aktulga and J. C. Fogarty and S. A. Pandit and A. Y. Grama}, title = {Parallel Reactive Molecular Dynamics: {N}umerical Methods and Algorithmic Techniques}, journal = {Parallel Computing}, year = 2012, volume = 38, number = {4--5}, pages = {245--259} } - fix qeq/reaxff command: doi:10.1016/j.parco.2011.08.005 @Article{Aktulga12, author = {H. M. Aktulga and J. C. Fogarty and S. A. Pandit and A. Y. Grama}, title = {Parallel Reactive Molecular Dynamics: {N}umerical Methods and Algorithmic Techniques}, journal = {Parallel Computing}, year = 2012, volume = 38, pages = {245--259} } CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE Neighbor list info ... update: every = 1 steps, delay = 0 steps, check = yes max neighbors/atom: 4000, page size: 100000 master list distance cutoff = 12 ghost atom cutoff = 12 binsize = 6, bins = 9 9 9 2 neighbor lists, perpetual/occasional/extra = 2 0 0 (1) pair reaxff, perpetual attributes: half, newton off, ghost pair build: half/bin/newtoff/ghost stencil: full/ghost/bin/3d bin: standard (2) fix qeq/reaxff, perpetual, copy from (1) attributes: half, newton off pair build: copy stencil: none bin: none Per MPI rank memory allocation (min/avg/max) = 609.5 | 609.5 | 609.5 Mbytes Step TotEng v_etotal_metal PotEng v_pe_metal Temp v_T_metal Volume v_V_metal Press v_P_metal 0 -831655.01 -36063.974 -838644.73 -36367.077 293.15 293.15 153642.47 153642.47 2079.6315 2107.1866 1000 -825063.37 -35778.134 -831730.47 -36067.246 279.61915 279.61915 153561.27 153561.27 -351.22851 -355.88228 Loop time of 346.523 on 1 procs for 1000 steps with 8000 atoms Performance: 0.249 ns/day, 96.256 hours/ns, 2.886 timesteps/s, 23.087 katom-step/s 99.6% CPU use with 1 MPI tasks x 1 OpenMP threads MPI task timing breakdown: Section | min time | avg time | max time |%varavg| %total --------------------------------------------------------------- Pair | 264.06 | 264.06 | 264.06 | 0.0 | 76.20 Neigh | 0 | 0 | 0 | 0.0 | 0.00 Comm | 0.065112 | 0.065112 | 0.065112 | 0.0 | 0.02 Output | 0.00015575 | 0.00015575 | 0.00015575 | 0.0 | 0.00 Modify | 82.364 | 82.364 | 82.364 | 0.0 | 23.77 Other | | 0.03372 | | | 0.01 Nlocal: 8000 ave 8000 max 8000 min Histogram: 1 0 0 0 0 0 0 0 0 0 Nghost: 15171 ave 15171 max 15171 min Histogram: 1 0 0 0 0 0 0 0 0 0 Neighs: 1.8731e+06 ave 1.8731e+06 max 1.8731e+06 min Histogram: 1 0 0 0 0 0 0 0 0 0 Total # of neighbors = 1873098 Ave neighs/atom = 234.13725 Neighbor list builds = 0 Dangerous builds = 0 if "${V_metal}>${V0_metal_times1000}" then "jump SELF unstable" if "${T}>${T_low} && ${T}<${T_up} && ${P}>${P_low} && ${P}<${P_up}" then "jump SELF break" jump SELF break # Write final averaged volume to file if temperature and volume have converged; otherwise wirte a # flag to indicate non-convergence. variable myStep equal step if "${myStep} < 2000000" then "print '${V}' file output/vol_T293.15.out" else "print 'not_converged' file output/vol_T293.15.out" print '${V}' file output/vol_T293.15.out 153467.1944491 print "LAMMPS calculation completed" LAMMPS calculation completed quit 0