# Variables that can be adjusted by kim-lammps-preprocessor to switch unit sets for # Simulator Models variable _u_distance equal 1.0 variable _u_energy equal 1.0 variable _u_mass equal 1.0 variable _u_time equal 1.0 variable _u_pressure equal 1.0 variable _u_temperature equal 1.0 # This line may be swapped out by kim-lammps-preprocessor if running against a Simulator # Model whose atom_style is not 'atomic' atom_style atomic # periodic boundary conditions along all three dimensions boundary p p p # Set neighbor skin variable neigh_skin equal 2.0*${_u_distance} variable neigh_skin equal 2.0*1 neighbor ${neigh_skin} bin neighbor 2 bin # create a supercell with cubic lattice (fcc, bcc, sc, or diamond) # using 10*10*10 conventional (orthogonal) unit cells variable latticeconst_converted equal 3.506186500191689*${_u_distance} variable latticeconst_converted equal 3.506186500191689*1 lattice bcc ${latticeconst_converted} lattice bcc 3.50618650019169 Lattice spacing in x,y,z = 3.50619 3.50619 3.50619 region simbox block 0 10 0 10 0 10 units lattice create_box 1 simbox Created orthogonal box = (0 0 0) to (35.0619 35.0619 35.0619) 1 by 1 by 1 MPI processor grid create_atoms 1 box Created 2000 atoms create_atoms CPU = 0.000225067 secs variable mass_converted equal 6.941*${_u_mass} variable mass_converted equal 6.941*1 # specify which KIM Model to use pair_style kim SNAP_ZuoChenLi_2019_Li__MO_732106099012_000 pair_coeff * * Li mass 1 ${mass_converted} mass 1 6.941 # initial volume variable v equal vol # assign formula variable V0 equal ${v} # evaluate initial value variable V0 equal 43102.7559830577 variable V0_metal equal ${V0}/(${_u_distance}*${_u_distance}*${_u_distance}) variable V0_metal equal 43102.7559830577/(${_u_distance}*${_u_distance}*${_u_distance}) variable V0_metal equal 43102.7559830577/(1*${_u_distance}*${_u_distance}) variable V0_metal equal 43102.7559830577/(1*1*${_u_distance}) variable V0_metal equal 43102.7559830577/(1*1*1) variable V0_metal_times1000 equal ${V0_metal}*1000 variable V0_metal_times1000 equal 43102.7559830577*1000 print "Initial system volume: ${V0_metal} Angstroms^3" Initial system volume: 43102.7559830577 Angstroms^3 # set the time step to 0.001 picoseconds variable timestep_converted equal 0.001*${_u_time} variable timestep_converted equal 0.001*1 timestep ${timestep_converted} timestep 0.001 variable temp_converted equal 313.15*${_u_temperature} variable temp_converted equal 313.15*1 variable Tdamp_converted equal 0.1*${_u_time} variable Tdamp_converted equal 0.1*1 variable press_converted equal 0.0*${_u_pressure} variable press_converted equal 0.0*1 variable Pdamp_converted equal 1*${_u_time} variable Pdamp_converted equal 1*1 # create initial velocities consistent with the chosen temperature velocity all create ${temp_converted} 17 mom yes rot yes velocity all create 313.15 17 mom yes rot yes # set NPT ensemble for all atoms fix ensemble all npt temp ${temp_converted} ${temp_converted} ${Tdamp_converted} iso ${press_converted} ${press_converted} ${Pdamp_converted} fix ensemble all npt temp 313.15 ${temp_converted} ${Tdamp_converted} iso ${press_converted} ${press_converted} ${Pdamp_converted} fix ensemble all npt temp 313.15 313.15 ${Tdamp_converted} iso ${press_converted} ${press_converted} ${Pdamp_converted} fix ensemble all npt temp 313.15 313.15 0.1 iso ${press_converted} ${press_converted} ${Pdamp_converted} fix ensemble all npt temp 313.15 313.15 0.1 iso 0 ${press_converted} ${Pdamp_converted} fix ensemble all npt temp 313.15 313.15 0.1 iso 0 0 ${Pdamp_converted} fix ensemble all npt temp 313.15 313.15 0.1 iso 0 0 1 # compute the time averages of pressure, temperature, and volume, respectively # ignore the first 5000 timesteps variable etotal_metal equal etotal/${_u_energy} var