# Variables that can be adjusted by kim-lammps-preprocessor to switch unit sets for # Simulator Models variable _u_distance equal 1.0 variable _u_energy equal 1.0 variable _u_mass equal 1.0 variable _u_time equal 1.0 variable _u_pressure equal 1.0 variable _u_temperature equal 1.0 # This line may be swapped out by kim-lammps-preprocessor if running against a Simulator # Model whose atom_style is not 'atomic' atom_style atomic # periodic boundary conditions along all three dimensions boundary p p p # Set neighbor skin variable neigh_skin equal 2.0*${_u_distance} variable neigh_skin equal 2.0*1 neighbor ${neigh_skin} bin neighbor 2 bin # create a supercell with cubic lattice (fcc, bcc, sc, or diamond) # using 10*10*10 conventional (orthogonal) unit cells variable latticeconst_converted equal 3.328125931322575*${_u_distance} variable latticeconst_converted equal 3.328125931322575*1 lattice fcc ${latticeconst_converted} lattice fcc 3.32812593132258 Lattice spacing in x,y,z = 3.32813 3.32813 3.32813 region simbox block 0 10 0 10 0 10 units lattice create_box 1 simbox Created orthogonal box = (0 0 0) to (33.2813 33.2813 33.2813) 1 by 1 by 1 MPI processor grid create_atoms 1 box Created 4000 atoms create_atoms CPU = 0.000339985 secs variable mass_converted equal 26.981538*${_u_mass} variable mass_converted equal 26.981538*1 # specify which KIM Model to use pair_style kim LJ_ElliottAkerson_2015_Universal__MO_959249795837_003 pair_coeff * * Al mass 1 ${mass_converted} mass 1 26.981538 # initial volume variable v equal vol # assign formula variable V0 equal ${v} # evaluate initial value variable V0 equal 36863.7279991596 variable V0_metal equal ${V0}/(${_u_distance}*${_u_distance}*${_u_distance}) variable V0_metal equal 36863.7279991596/(${_u_distance}*${_u_distance}*${_u_distance}) variable V0_metal equal 36863.7279991596/(1*${_u_distance}*${_u_distance}) variable V0_metal equal 36863.7279991596/(1*1*${_u_distance}) variable V0_metal equal 36863.7279991596/(1*1*1) variable V0_metal_times1000 equal ${V0_metal}*1000 variable V0_metal_times1000 equal 36863.7279991596*1000 print "Initial system volume: ${V0_metal} Angstroms^3" Initial system volume: 36863.7279991596 Angstroms^3 # set the time step to 0.001 picoseconds variable timestep_converted equal 0.001*${_u_time} variable timestep_converted equal 0.001*1 timestep ${timestep_converted} timestep 0.001 variable temp_converted equal 293.15*${_u_temperature} variable temp_converted equal 293.15*1 variable Tdamp_converted equal 0.1*${_u_time} variable Tdamp_converted equal 0.1*1 variable press_converted equal 0.0*${_u_pressure} variable press_converted equal 0.0*1 variable Pdamp_converted equal 1*${_u_time} variable Pdamp_converted equal 1*1 # create initial velocities consistent with the chosen temperature velocity all create ${temp_converted} 17 mom yes rot yes velocity all create 293.15 17 mom yes rot yes # set NPT ensemble for all atoms fix ensemble all npt temp ${temp_converted} ${temp_converted} ${Tdamp_converted} iso ${press_converted} ${press_converted} ${Pdamp_converted} fix ensemble all npt temp 293.15 ${temp_converted} ${Tdamp_converted} iso ${press_converted} ${press_converted} ${Pdamp_converted} fix ensemble all npt temp 293.15 293.15 ${Tdamp_converted} iso ${press_converted} ${press_converted} ${Pdamp_converted} fix ensemble all npt temp 293.15 293.15 0.1 iso ${press_converted} ${press_converted} ${Pdamp_converted} fix ensemble all npt temp 293.15 293.15 0.1 iso 0 ${press_converted} ${Pdamp_converted} fix ensemble all npt temp 293.15 293.15 0.1 iso 0 0 ${Pdamp_converted} fix ensemble all npt temp 293.15 293.15 0.1 iso 0 0 1 # compute the time averages of pressure, temperature, and volume, respectively # ignore the first 5000 timesteps variable etotal_metal equal etotal/${_u_energy} variable etotal_metal equal etotal/1 variable pe_metal equal pe/${_u_energy} variable pe_metal equal pe/1 variable T_metal equal temp/${_u_temperature} variable T_metal equal temp/1 variable V_metal equal vol/(${_u_distance}*${_u_distance}*${_u_distance}) variable V_metal equal vol/(1*${_u_distance}*${_u_distance}) variable V_metal equal vol/(1*1*${_u_distance}) variable V_metal equal vol/(1*1*1) variable P_metal equal press/${_u_pressure} variable P_metal equal press/1 fix avgmyTemp all ave/time 5 20 100 v_T_metal ave running start 5000 fix avgmyPress all ave/time 5 20 100 v_P_metal ave running start 5000 fix avgmyVol all ave/time 5 20 100 v_V_metal ave running start 5000 # extract fix quantities into variables so they can be used in if-else logic later. variable T equal f_avgmyTemp variable P equal f_avgmyPress variable V equal f_avgmyVol # set error bounds for temperature and pressure in original metal units (K and bar) variable T_low equal "293.15 - 0.2" variable T_up equal "293.15 + 0.2" variable P_low equal "0.0 - 0.2" variable P_up equal "0.0 + 0.2" # print to logfile every 1000 timesteps thermo_style custom step etotal v_etotal_metal pe v_pe_metal temp v_T_metal vol v_V_metal press v_P_metal thermo 1000 # Run a simulation for at most 2000*1000 timesteps. At each 1000th time step, check # whether the temperature and pressure have converged. If yes, break. label top variable a loop 2000 run 1000 Neighbor list info ... update every 1 steps, delay 10 steps, check yes max neighbors/atom: 2000, page size: 100000 master list distance cutoff = 20.5307 ghost atom cutoff = 20.5307 binsize = 10.2653, bins = 4 4 4 1 neighbor lists, perpetual/occasional/extra = 1 0 0 (1) pair kim, perpetual attributes: full, newton off, cut 20.5307 pair build: full/bin/atomonly stencil: full/bin/3d bin: standard ERROR on proc 0: Neighbor list overflow, boost neigh_modify one (src/npair_full_bin_atomonly.cpp:90) Last command: run 1000