../../td/ElasticConstantsCrystal__TD_034002468289_001/runner ThreeBodyBondOrder_PPM_PurjaPunMishin_2017_Si__MO_566683736730_000 [{'property-id': 'tag:staff@noreply.openkim.org,2023-02-21:property/crystal-structure-npt', 'instance-id': 1, 'prototype-label': {'source-value': 'A_oC92_63_ce2f2g3h'}, 'stoichiometric-species': {'source-value': ['Si']}, 'a': {'source-value': 16.46997232193552, 'source-unit': 'angstrom', 'si-unit': 'm', 'si-value': 1.646997232193552e-09}, 'parameter-names': {'source-value': ['b/a', 'c/a', 'y1', 'x2', 'y3', 'z3', 'y4', 'z4', 'x5', 'y5', 'x6', 'y6', 'x7', 'y7', 'z7', 'x8', 'y8', 'z8', 'x9', 'y9', 'z9']}, 'parameter-values': {'source-value': [0.78463198137868, 0.604095553469152, 0.14406858583561777, 0.6019918943397604, 0.2468671027605842, 0.440595244248289, 0.4188332066054733, 0.3703568873552969, 0.5713811666334219, 0.37110513802554707, 0.11640567466473395, 0.042503451136239406, 0.37847304959641725, 0.28734641650486087, 0.44077089797439717, 0.325163519647506, 0.8751680930444536, 0.6291411227763846, 0.19305122530444718, 0.9197190532327635, 0.5579654853559508]}, 'cell-cauchy-stress': {'source-value': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 'source-unit': 'eV/angstrom^3', 'si-unit': 'kg / m s^2', 'si-value': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}, 'temperature': {'source-value': 0.0, 'source-unit': 'K', 'si-unit': 'K', 'si-value': 0.0}, 'crystal-genome-source-structure-id': {'source-value': [['RD_450277629393_000']]}, 'coordinates-file': {'source-value': 'instance-1.poscar'}, 'coordinates-file-conventional': {'source-value': 'conventional.instance-1.poscar'}, 'meta': {'uuid': 'TE_652995540582_003-and-MO_566683736730_000-1752531189-tr', 'path': 'tr/TE_652995540582_003-and-MO_566683736730_000-1752531189-tr', 'type': 'tr', '_id': 'TE_652995540582_003-and-MO_566683736730_000-1752531189-tr', 'runner': {'extended-id': 'EquilibriumCrystalStructure_A_oC92_63_ce2f2g3h_Si__TE_652995540582_003', 'short-id': 'TE_652995540582_003', 'kimid-prefix': 'EquilibriumCrystalStructure_A_oC92_63_ce2f2g3h_Si', 'kimid-typecode': 'te', 'kimid-number': '652995540582', 'kimid-version': '003', 'kimid-version-as-integer': 3, 'name': 'EquilibriumCrystalStructure_A_oC92_63_ce2f2g3h_Si', 'type': 'te', 'kimnum': '652995540582', 'version': 3, 'shortcode': 'TE_652995540582', 'kimcode': 'EquilibriumCrystalStructure_A_oC92_63_ce2f2g3h_Si__TE_652995540582_003', 'path': 'te/EquilibriumCrystalStructure_A_oC92_63_ce2f2g3h_Si__TE_652995540582_003', 'approved': True, '_id': 'EquilibriumCrystalStructure_A_oC92_63_ce2f2g3h_Si__TE_652995540582_003', 'makeable': True, 'runner': True, 'driver': {'extended-id': 'EquilibriumCrystalStructure__TD_457028483760_003', 'short-id': 'TD_457028483760_003', 'kimid-prefix': 'EquilibriumCrystalStructure', 'kimid-typecode': 'td', 'kimid-number': '457028483760', 'kimid-version': '003', 'kimid-version-as-integer': 3, 'name': 'EquilibriumCrystalStructure', 'type': 'td', 'kimnum': '457028483760', 'version': 3, 'shortcode': 'TD_457028483760', 'kimcode': 'EquilibriumCrystalStructure__TD_457028483760_003', 'path': 'td/EquilibriumCrystalStructure__TD_457028483760_003', 'approved': True, '_id': 'EquilibriumCrystalStructure__TD_457028483760_003', 'makeable': True, 'driver': True, 'contributor-id': '4ad03136-ed7f-4316-b586-1e94ccceb311', 'description': 'Computes the equilibrium crystal structure and energy for an arbitrary crystal at zero temperature and applied stress by performing symmetry-constrained relaxation. The crystal structure is specified using the AFLOW prototype designation. Multiple sets of free parameters corresponding to the crystal prototype may be specified as initial guesses for structure optimization. No guarantee is made regarding the stability of computed equilibria, nor that any are the ground state.', 'developer': ['4ad03136-ed7f-4316-b586-1e94ccceb311', '360c0aed-48ce-45f6-ba13-337f12a531e8'], 'doi': '10.25950/866c7cfa', 'domain': 'openkim.org', 'executables': ['runner', 'test_template/runner'], 'funding': [{'award-number': 'NSF DMR-1834251', 'award-title': 'Collaborative Research: Reliable Materials Simulation based on the Knowledgebase of Interatomic Models (KIM)', 'funder-identifier': 'https://doi.org/10.13039/100000001', 'funder-identifier-type': 'Crossref Funder ID', 'funder-name': 'National Science Foundation', 'scheme-uri': 'http://doi.org/'}], 'kim-api-version': '2.3', 'maintainer-id': '4ad03136-ed7f-4316-b586-1e94ccceb311', 'properties': ['tag:staff@noreply.openkim.org,2023-02-21:property/binding-energy-crystal', 'tag:staff@noreply.openkim.org,2023-02-21:property/crystal-structure-npt', 'tag:staff@noreply.openkim.org,2025-04-15:property/mass-density-crystal-npt'], 'publication-year': '2025', 'simulator-name': 'ase', 'source-citations': [{'abstract': 'Empirical databases of crystal structures and thermodynamic properties are fundamental tools for materials research. Recent rapid proliferation of computational data on materials properties presents the possibility to complement and extend the databases where the experimental data is lacking or difficult to obtain. Enhanced repositories that integrate both computational and empirical approaches open novel opportunities for structure discovery and optimization, including uncovering of unsuspected compounds, metastable structures and correlations between various characteristics. The practical realization of these opportunities depends on a systematic compilation and classification of the generated data in addition to an accessible interface for the materials science community. In this paper we present an extensive repository, aflowlib.org, comprising phase-diagrams, electronic structure and magnetic properties, generated by the high-throughput framework AFLOW. This continuously updated compilation currently contains over 150,000 thermodynamic entries for alloys, covering the entire composition range of more than 650 binary systems, 13,000 electronic structure analyses of inorganic compounds, and 50,000 entries for novel potential magnetic and spintronics systems. The repository is available for the scientific community on the website of the materials research consortium, aflowlib.org.', 'author': 'Curtarolo, Stefano and Setyawan, Wahyu and Wang, Shidong and Xue, Junkai and Yang, Kesong and Taylor, Richard H. and Nelson, Lance J. and Hart, Gus L.W. and Sanvito, Stefano and Buongiorno-Nardelli, Marco and Mingo, Natalio and Levy, Ohad', 'doi': 'https://doi.org/10.1016/j.commatsci.2012.02.002', 'issn': '0927-0256', 'journal': 'Computational Materials Science', 'keywords': 'High-throughput, Combinatorial materials science, Ab initio, AFLOW, Materials genome initiative', 'pages': '227-235', 'recordkey': 'TD_457028483760_003a', 'recordtype': 'article', 'title': '{AFLOWLIB.ORG}: A distributed materials properties repository from high-throughput ab initio calculations', 'url': 'https://www.sciencedirect.com/science/article/pii/S0927025612000687', 'volume': '58', 'year': '2012'}, {'abstract': 'To enable materials databases supporting computational and experimental research, it is critical to develop platforms that both facilitate access to the data and provide the tools used to generate/analyze it — all while considering the diversity of users’ experience levels and usage needs. The recently formulated FAIR\xa0principles (Findable, Accessible, Interoperable, and Reusable) establish a common framework to aid these efforts. This article describes aflow.org, a web ecosystem developed to provide FAIR-compliant access to the AFLOW\xa0databases. Graphical and programmatic retrieval methods are offered, ensuring accessibility for all experience levels and data needs. aflow.org\xa0goes beyond data-access by providing applications to important features of the AFLOW\xa0software\xa0[1], assisting users in their own calculations without the need to install the entire high-throughput framework. Outreach commitments to provide AFLOW\xa0tutorials and materials science education to a global and diverse audiences will also be presented.', 'author': 'Esters, Marco and Oses, Corey and Divilov, Simon and Eckert, Hagen and Friedrich, Rico and Hicks, David and Mehl, Michael J. and Rose, Frisco and Smolyanyuk, Andriy and Calzolari, Arrigo and Campilongo, Xiomara and Toher, Cormac and Curtarolo, Stefano', 'doi': 'https://doi.org/10.1016/j.commatsci.2022.111808', 'issn': '0927-0256', 'journal': 'Computational Materials Science', 'keywords': 'Autonomous materials science, Materials genome initiative, aflow, Computational ecosystems, Online tools, Database, Ab initio', 'pages': '111808', 'recordkey': 'TD_457028483760_003b', 'recordtype': 'article', 'title': 'aflow.org: A web ecosystem of databases, software and tools', 'url': 'https://www.sciencedirect.com/science/article/pii/S0927025622005195', 'volume': '216', 'year': '2023'}, {'abstract': 'The realization of novel technological opportunities given by computational and autonomous materials design requires efficient and effective frameworks. For more than two decades, aflow++ (Automatic-Flow Framework for Materials Discovery) has provided an interconnected collection of algorithms and workflows to address this challenge. This article contains an overview of the software and some of its most heavily-used functionalities, including algorithmic details, standards, and examples. Key thrusts are highlighted: the calculation of structural, electronic, thermodynamic, and thermomechanical properties in addition to the modeling of complex materials, such as high-entropy ceramics and bulk metallic glasses. The aflow++ software prioritizes interoperability, minimizing the number of independent parameters and tolerances. It ensures consistency of results across property sets — facilitating machine learning studies. The software also features various validation schemes, offering real-time quality assurance for data generated in a high-throughput fashion. Altogether, these considerations contribute to the development of large and reliable materials databases that can ultimately deliver future materials systems.', 'author': 'Oses, Corey and Esters, Marco and Hicks, David and Divilov, Simon and Eckert, Hagen and Friedrich, Rico and Mehl, Michael J. and Smolyanyuk, Andriy and Campilongo, Xiomara and {van de Walle}, Axel and Schroers, Jan and Kusne, A. Gilad and Takeuchi, Ichiro and Zurek, Eva and Nardelli, Marco Buongiorno and Fornari, Marco and Lederer, Yoav and Levy, Ohad and Toher, Cormac and Curtarolo, Stefano', 'doi': 'https://doi.org/10.1016/j.commatsci.2022.111889', 'issn': '0927-0256', 'journal': 'Computational Materials Science', 'keywords': 'AFLOW, Autonomous computation, Machine learning, Workflows', 'pages': '111889', 'recordkey': 'TD_457028483760_003c', 'recordtype': 'article', 'title': 'aflow++: A {C}++ framework for autonomous materials design', 'url': 'https://www.sciencedirect.com/science/article/pii/S0927025622006000', 'volume': '217', 'year': '2023'}], 'title': 'Equilibrium structure and energy for a crystal structure at zero temperature and pressure v003', 'created_on': '2025-04-22 16:17:53.660578'}, 'dependencies': [], 'title': 'Equilibrium crystal structure and energy for Si in AFLOW crystal prototype A_oC92_63_ce2f2g3h v003', 'test-driver': 'EquilibriumCrystalStructure__TD_457028483760_003', 'species': ['Si'], 'developer': ['4ad03136-ed7f-4316-b586-1e94ccceb311', '360c0aed-48ce-45f6-ba13-337f12a531e8', '4d62befd-21c4-42b8-a472-86132e6591f3', 'c4d2afd1-647e-4347-ae94-5e4772c16883'], 'description': 'Computes the equilibrium crystal structure and energy for Si in AFLOW crystal prototype A_oC92_63_ce2f2g3h at zero temperature and applied stress by performing symmetry-constrained relaxation. The following initial guess for the parameters (representing cell and internal degrees of freedom) allowed to vary during the relaxation is used:\na (angstrom): 16.8175, b/a: 0.76472127, c/a: 0.59618255, y1: 0.14451121, x2: 0.3989819, y3: 0.75155355, z3: 0.56020189, y4: 0.57865634, z4: 0.63103039, x5: 0.61588756, y5: 0.5449893, x6: 0.92923425, y6: 0.87216844, x7: 0.11899988, y7: 0.78738309, z7: 0.44063684, x8: 0.17613844, y8: 0.62454305, z8: 0.37329271, x9: 0.3077052, y9: 0.58172809, z9: 0.44099105, obtained from OpenKIM Reference Data item RD_450277629393_000', 'disclaimer': 'Computer generated', 'contributor-id': '4ad03136-ed7f-4316-b586-1e94ccceb311', 'maintainer-id': '4ad03136-ed7f-4316-b586-1e94ccceb311', 'kim-api-version': '2.3', 'publication-year': '2025', 'executables': ['runner'], 'domain': 'openkim.org', 'matching-models': ['standard-models'], 'created_on': '2025-07-14 21:43:03.700855'}, 'subject': {'extended-id': 'ThreeBodyBondOrder_PPM_PurjaPunMishin_2017_Si__MO_566683736730_000', 'short-id': 'MO_566683736730_000', 'kimid-prefix': 'ThreeBodyBondOrder_PPM_PurjaPunMishin_2017_Si', 'kimid-typecode': 'mo', 'kimid-number': '566683736730', 'kimid-version': '000', 'kimid-version-as-integer': 0, 'name': 'ThreeBodyBondOrder_PPM_PurjaPunMishin_2017_Si', 'type': 'mo', 'kimnum': '566683736730', 'version': 0, 'shortcode': 'MO_566683736730', 'kimcode': 'ThreeBodyBondOrder_PPM_PurjaPunMishin_2017_Si__MO_566683736730_000', 'path': 'mo/ThreeBodyBondOrder_PPM_PurjaPunMishin_2017_Si__MO_566683736730_000', 'approved': True, '_id': 'ThreeBodyBondOrder_PPM_PurjaPunMishin_2017_Si__MO_566683736730_000', 'makeable': True, 'subject': True, 'driver': {'extended-id': 'ThreeBodyBondOrder_PPM__MD_184422512875_000', 'short-id': 'MD_184422512875_000', 'kimid-prefix': 'ThreeBodyBondOrder_PPM', 'kimid-typecode': 'md', 'kimid-number': '184422512875', 'kimid-version': '000', 'kimid-version-as-integer': 0, 'name': 'ThreeBodyBondOrder_PPM', 'type': 'md', 'kimnum': '184422512875', 'version': 0, 'shortcode': 'MD_184422512875', 'kimcode': 'ThreeBodyBondOrder_PPM__MD_184422512875_000', 'path': 'md/ThreeBodyBondOrder_PPM__MD_184422512875_000', 'approved': True, '_id': 'ThreeBodyBondOrder_PPM__MD_184422512875_000', 'makeable': True, 'driver': True, 'contributor-id': 'c4d2afd1-647e-4347-ae94-5e4772c16883', 'description': 'This is a model driver for an optimized interatomic potential based on a modified Tersoff form originally constructed for bulk silicon and 2D silicon (silicene). The silicon potential reproduces a wide range of properties of Si and improves over existing potentials with respect to point defect structures and energies, surface energies and reconstructions, thermal expansion, melting temperature and other properties.', 'developer': ['02eb69dc-bae3-460c-aaf4-1513724c986f', '201572cf-870c-477f-b34f-3a6481002dee'], 'doi': '10.25950/23639742', 'domain': 'openkim.org', 'executables': ['bondorder.inc', 'bondorder_aux.inc'], 'implementer': ['c4d2afd1-647e-4347-ae94-5e4772c16883', '4d62befd-21c4-42b8-a472-86132e6591f3'], 'kim-api-version': '2.0', 'maintainer-id': 'c4d2afd1-647e-4347-ae94-5e4772c16883', 'publication-year': '2019', 'source-citations': [{'author': 'Pun, G. P. Purja and Mishin, Y.', 'doi': '10.1103/PhysRevB.95.224103', 'issue': '22', 'journal': 'Phys. Rev. B', 'numpages': '21', 'pages': '224103', 'recordkey': 'MD_184422512875_000a', 'recordtype': 'article', 'title': 'Optimized interatomic potential for silicon and its application to thermal stability of silicene', 'volume': '95', 'year': '2017'}], 'title': 'Three-body bond-order (Tersoff-style) potential by Purja Pun and Mishin (2017) v000', 'created_on': '2023-11-10 21:08:50.372998'}, 'contributor-id': 'c4d2afd1-647e-4347-ae94-5e4772c16883', 'description': 'An optimized interatomic potential for silicon using a modified Tersoff model. The potential reproduces a wide range of properties of Si and improves over existing potentials with respect to point defect structures and energies, surface energies and reconstructions, thermal expansion, melting temperature and other properties. The proposed potential is compared with three other potentials from the literature. The potentials demonstrate reasonable agreement with first-principles binding energies of small Si clusters as well as single-layer and bilayer silicenes. The four potentials are used to evaluate the thermal stability of free-standing silicenes in the form of nano-ribbons, nano-flakes, and nano-tubes. While single-layer silicene is mechanically stable at zero Kelvin, it is predicted to become unstable and collapse at room temperature. By contrast, the bilayer silicene demonstrates a larger bending rigidity and remains stable at and even above room temperature. The results suggest that bilayer silicene might exist in a free-standing form at ambient conditions.', 'developer': ['02eb69dc-bae3-460c-aaf4-1513724c986f', '201572cf-870c-477f-b34f-3a6481002dee'], 'doi': '10.25950/7495bb93', 'domain': 'openkim.org', 'kim-api-version': '2.0', 'maintainer-id': 'c4d2afd1-647e-4347-ae94-5e4772c16883', 'model-driver': 'ThreeBodyBondOrder_PPM__MD_184422512875_000', 'potential-type': 'ppm', 'publication-year': '2019', 'source-citations': [{'author': 'Pun, G. P. Purja and Mishin, Y.', 'doi': '10.1103/PhysRevB.95.224103', 'issue': '22', 'journal': 'Phys. Rev. B', 'numpages': '21', 'pages': '224103', 'recordkey': 'MO_566683736730_000a', 'recordprimary': 'recordprimary', 'recordtype': 'article', 'title': 'Optimized interatomic potential for silicon and its application to thermal stability of silicene', 'volume': '95', 'year': '2017'}], 'species': ['Si'], 'title': 'Three-body bond-order potential for Si by Purja Pun and Mishin (2017) v000', 'created_on': '2023-10-07 07:51:29.299562'}, 'test': 'EquilibriumCrystalStructure_A_oC92_63_ce2f2g3h_Si__TE_652995540582_003', 'model': 'ThreeBodyBondOrder_PPM_PurjaPunMishin_2017_Si__MO_566683736730_000', 'domain': 'openkim.org', 'test-result-id': 'TE_652995540582_003-and-MO_566683736730_000-1752531189-tr', 'created_on': '2025-07-14 23:03:38.957819', 'dependencies': []}, 'created_on': '2025-07-14 23:03:38.957819', 'inserted_on': '2025-07-15 01:41:28.510113', 'latest': True}]