#!/usr/bin/env python ################################################################################ # # CDDL HEADER START # # The contents of this file are subject to the terms of the Common Development # and Distribution License Version 1.0 (the "License"). # # You can obtain a copy of the license at # http:# www.opensource.org/licenses/CDDL-1.0. See the License for the # specific language governing permissions and limitations under the License. # # When distributing Covered Code, include this CDDL HEADER in each file and # include the License file in a prominent location with the name LICENSE.CDDL. # If applicable, add the following below this CDDL HEADER, with the fields # enclosed by brackets "[]" replaced with your own identifying information: # # Portions Copyright (c) [yyyy] [name of copyright owner]. All rights reserved. # # CDDL HEADER END # # Copyright (c) 2017, Regents of the University of Minnesota. # All rights reserved. # # Contributor(s): # Ellad B. Tadmor # ################################################################################ # The docstring below is vc_description '''Determines whether a model has a continuous energy and first derivative, i.e. belongs to the C^1 continuity class, for all possible dimers. For a model supporting N species, there are N + N!/(2(N-2)! distinct dimers for all possible species combinations. (For example if N=3, there are 3+3!/2=6 dimers. If the species are A,B,C, the 6 dimers are AA, BB, CC, AB, AC, BC.) For each dimer, the equilibrium separation and cutoff are determined. The continuity across the cutoff is assessed. Then an analysis is performed to detect any discontinuities from half the equilibrium distance to the cutoff. Although the verification check only requires C^1 continuity to pass, continuity up to 3rd order is checked and reported.''' # Python 2-3 compatible code issues from __future__ import print_function try: input = raw_input except NameError: pass from ase.calculators.kim.kim import KIM, KIM_get_supported_species_list import kimvc import itertools from ase import Atoms import scipy.optimize as opt import numpy as np import sys import math import numdifftools as nd from numdifftools.step_generators import MaxStepGenerator __version__ = "002" __author__ = "Ellad Tadmor" ################################################################################ # # FUNCTIONS # ################################################################################ def create_species_pairs_list(species): ''' Given a list of species, create all the monoatomic and biatomic dimer pairs. ''' species_pairs = [] for sp in species: species_pairs.append((sp,sp)) if len(species)>1: species_pairs += list(itertools.combinations(species,2)) return species_pairs ################################################################################ def energy(a, dimer, positions): ''' Returns the energy of a dimer with a separation 'a'. ''' dimer[1].x = a return dimer.get_potential_energy() ################################################################################ def energy_cheat(a, dimer, positions, offset): ''' Returns the energy of a dimer with a separation 'a' plus a small 'offset' to ensure that the root bisection has a positive number past the cutoff. ''' dimer[1].x = a return dimer.get_potential_energy() + offset ################################################################################ def get_equilibrium_separation(dimer): ''' Compute the equilibrium separation of a dimer (2-atom chain). ''' positions = dimer.get_positions() init_guess = positions[1][0] aopt_arr, eopt, iterations, funccalls, warnflag = \ opt.fmin(energy, init_guess, args=(dimer,positions), \ full_output=True, xtol=1e-8, disp=False, maxiter=1000) info = {"iterations": iterations, "func_calls": funccalls, "warnflag": warnflag} return aopt_arr[0], eopt, info ################################################################################ def get_cutoff_radius(dimer,a,b,offset): ''' Compute the cutoff radius (distance at which energy of dimer is zero) ''' positions = dimer.get_positions() x0, results = opt.bisect(energy_cheat, a, b, args=(dimer,positions,offset), \ full_output=True, xtol=1e-8, maxiter=1000) return x0, results ################################################################################ def do_vc(model, vc): ''' Perform Dimer Continuity C1 Verification Check ''' # Initialize max_deriv = 3 # largest derivative to be investigated # (NOTE: If this is increased, increase nth below) continuous = [True]*(1+max_deriv) # assume function and all # derivs are continuous cont_tolerance = 1e-6 # Values in absolute value greater than this # of the energy or its derivatives at the # cutoff are considered discontinuous. led_tolerance = 1.0 # value considered an indicator of a # discontinuity for the local edge detection # algorithm nth = { 0: "Energy", 1: "1st-Deriv", 2: "2nd-Deriv", 3: "3rd-Deriv"} yesno = { True: "yes", False: "** NO **"} # Get supported species species = KIM_get_supported_species_list(model) species = kimvc.remove_species_not_supported_by_ASE(species) species.sort() # Print information specific to this VC dashwidth = 101 vc.rwrite('') vc.rwrite('-'*dashwidth) vc.rwrite('Results for KIM Model : %s' % model.strip()) vc.rwrite('Supported species : %s' % ' '.join(species)) # Create list of dimers species species_pairs = create_species_pairs_list(species) # Loop over all dimers and determine the smoothness of each for i in range(0,len(species_pairs)): # Print header for this dimer vc.rwrite('') vc.rwrite('-'*dashwidth) vc.rwrite('DIMER {0}--{1}'.format(*species_pairs[i])) vc.rwrite('-'*dashwidth) # Build ASE Atoms object for the dimer a = 1.0 dimer = Atoms(''.join(species_pairs[i]), positions=[(0,0,0),(a,0,0)], cell=(1000*a, 1000*a, 1000*a),pbc=(0,0,0)) calc = KIM(model) dimer.set_calculator(calc) vc.rwrite('') vc.rwrite('E n e r g y E x t r e m a') # Find equilibrium separation for this dimer got_equil_sep = False while not got_equil_sep: try: aopt, eopt, info = get_equilibrium_separation(dimer) got_equil_sep = True except: a += 0.25 if a > 10.0: sys.exit(1) # Cannot find a working configuration within a # a reasonable dimer separation dimer[1].x = a warn = 'none' if info['warnflag']: warn = '** DID NOT CONVERGE **' vc.rwrite('{0:25} {1:>15} {2:>15} {3:>9} {4:>9} {5}'. format('', 'distance', 'energy', '#iter', '#fn-calls', 'warnings')) vc.rwrite('{0:25} {1: 11.8e} {2: 11.8e} {3:9d} {4:9d} {5}'. format('Equilibrium separation:', aopt, eopt, info['iterations'],info['func_calls'],warn)) if info['warnflag']: vc.rwrite('') vc.rwrite('WARNING: NOT CHECKING CONTINUITY FOR '+'-'.join(species_pairs[i])+' DIMER.') vc.rwrite('') continue # failed to converge, so skip this dimer # Find dimer cutoff radius # # Step 1: Get the infinite separation energy. # There is an assumption here that the potential will return # a constant value when the separation exceeds some value. # It doesn't have to be zero, but it has to be constant. positions = dimer.get_positions() ainf = aopt*1000 dimer.set_cell(ainf*1.1*np.identity(3), scale_atoms=False) # rescale box so its big enough einf = energy(ainf, dimer, positions) # # Step 2: Find upper end of bracket delimiting cutoff. # Start from equilibrium separation, increase seperation # until energy reaches infinite separation energy. warn = 'none' failed = False b = aopt still_interacting = True while still_interacting and not failed: b += aopt if b>ainf: failed = True warn = '** Unable to obtain upper bracket for cutoff radius **' else: eb = energy(b, dimer, positions) if eb == einf: still_interacting = False # # Step 3: Find lower end of bracket delimiting cutoff. # Start from end of bracket, and reduce separation # until energy changes by a discernable amount. if not failed: a = b da = 0.01 not_interacting = True while not_interacting: a -= da if a<0: failed = True warn = '** Unable to obtain lower cutoff bracket for cutoff radius **' else: ea = energy(a, dimer, positions) if abs(ea-einf)>1e-6: not_interacting = False # # Step 4: Use bisection algorithm to get cutoff radius. ran_bisection = False if not failed: if ea15} {2:10}'. format('', 'value', 'continuous')) # Check smoothness at cutoff sg = MaxStepGenerator(base_step=0.5*(rcut-aopt), num_steps=14, use_exact_steps=True, step_ratio=1.6, offset=0) for n in range(0,max_deriv+1): Denergy = nd.Derivative(energy, step=sg, full_output=True, method='backward', n=n) val, info = Denergy(rcut, dimer=dimer, positions=positions) is_continuous = abs(val) <= cont_tolerance if not is_continuous: continuous[n] = False vc.rwrite('{0:10} {1: 11.8e} {2:>10}'. format(nth[n], np.asscalar(val), yesno[is_continuous])) vc.rwrite('') vc.rwrite('C o n t i n u i t y') vc.rwrite('') # Set the range and increment for exploring internal discontinuities afrac = 0.5 got_amin = False while not got_amin: try: amin = (1.-afrac)*aopt dimer[1].x = amin en = dimer.get_potential_energy() # See that energy can be # computed without error. got_amin = True except: afrac *= 0.5 amax = rcut del_a = 0.01 na = int(math.ceil((amax-amin)/del_a)) dimer[1].x = amin refposns = dimer.get_positions() vc.rwrite('Checking continuity for r = [{0:.5f},{1:.5f}] at {2:d} points (Delta r = {3:.5f})'. \ format(amin,amax,na,del_a)) vc.rwrite('') vc.rwrite('Local edge detection based on a normalized 5th-order local difference formula T^5') vc.rwrite('is used to determine the presence of discontinuities. The tolernace is |T^5|>{0:.5f}.'.format(led_tolerance)) vc.rwrite('(For details see Anne Gelb and Eitan Tadmor, J. Sci. Comp., 28:279-306, 2006.)') vc.rwrite('') for n in range(0,max_deriv+1): # set numerical derivative to constant step to prevent the algorithm # going haywire in some cases. Denergy = nd.Derivative(energy, full_output=True, n=n,step=0.1*del_a) if n==0: aux_file = 'dimer-energy-' + ''.join(species_pairs[i]) + '.dat' else: aux_file = 'dimer-energy-deriv-' + str(n) + '-'+ ''.join(species_pairs[i]) + '.dat' vc.vc_files.append(aux_file) vc.rwrite('') vc.rwrite('Checking {0} ({1} vs. distance in file "{2}")'. \ format(nth[n], nth[n].lower(), aux_file)) # Generate energy curve r = [] e = [] for j in range(0,na+1): a = amin + j*del_a val, info = Denergy(a, dimer=dimer, positions=refposns) r.append(a) e.append(np.asscalar(val)) vc.write_aux_x_y(aux_file, r, e) # Apply local edge detection algorithm to identify discontinuities # Based on: A. Gelb and E. Tadmor, J. Sci. Comp., 28:279-306, 2006. fact = 1.0/6.0 is_continuous = True for j in range(2,na-3): # use 5-th order local difference formula led = fact*(-e[j-2] + 5*e[j-1] - 10*e[j] + 10*e[j+1] - 5*e[j+2] + e[j+3]) if abs(led) > led_tolerance: continuous[n] = False is_continuous = False vc.rwrite('==> Suspected discontinuity encountered at r={:11.8e} (|T^5| = {:11.8e})'.format(r[j],abs(led))) if is_continuous: vc.rwrite('... No discontinuities found.') # Summary of results vc.rwrite('') vc.rwrite('='*dashwidth) vc.rwrite('') vc.rwrite('SUMMARY of Model Continuity Results Across All Dimers:') vc.rwrite('') vc.rwrite('{0:10} {1:10}'.format('', 'continuous')) vc.rwrite('-'*29) for n in range(0,max_deriv+1): vc.rwrite('{0:10} {1:>10}'.format(nth[n], yesno[continuous[n]])) # Determine continuity class and write out properties k=-1 n=0 while n<=max_deriv and continuous[n]: k = n n += 1 vc_comment = 'The model is C^{0:d} continuous. '.format(k) if k==-1: vc_comment += 'This means that the model has discontinuous energy.' if k==0: vc_comment += 'This means that the model has continuous energy, but a discontinuous first derivative.' if k==1: vc_comment += 'This means that the model has continuous energy and continuous first derivative.' if k==2: vc_comment += 'This means that the model has continuous energy and continuous derivatives up to order 2.' if k==3: vc_comment += 'This means that the model has continuous energy and continuous derivatives at least up to order 3. (Derivatives beyond this order were not tested.)' vc.rwrite('') vc.rwrite('='*dashwidth) vc.rwrite('Continuity must be C^1 or higher to pass this verification check.') vc.rwrite('') if k>=1: vc_grade = 'P' else: vc_grade = 'F' return vc_grade, vc_comment ################################################################################ # # MAIN PROGRAM # ############################################################################### if __name__ == '__main__': vcargs = {"vc_name" : "vc-dimer-continuity-c1", "vc_author" : __author__, "vc_description" : kimvc.vc_stripall(__doc__), "vc_category" : "informational", "vc_grade_basis" : "passfail", "vc_files" : [], "vc_debug" : False} # Set to True to get exception traceback info # Get the model extended KIM ID: model = input("Model Extended KIM ID = ") # Execute VC kimvc.setup_and_run_vc(do_vc, model, **vcargs)