@Comment { \documentclass{article} \usepackage{url} \begin{document} This Model originally published in \cite{OpenKIM-MO:680566758384:000a} is archived in the OpenKIM repository \cite{tadmor:elliott:2011, elliott:tadmor:2011} at \cite{OpenKIM-MO:680566758384:000, OpenKIM-MD:120291908751:006}. \bibliographystyle{vancouver} \bibliography{kimcite-MO_680566758384_000.bib} \end{document} } @Misc{OpenKIM-MO:680566758384:000, author = {Pranav Kumar and Mohit Ludhwani and Sambit Das and Vikram Gavini and Anand K. Kanjarla and Ilaksh Adlakha}, title = {{EAM} {P}otential developed to model the effect of interstitial hydrogen concentration on plasticity in α-{F}e by {K}umar, {L}udhwani, and {D}as et al. (2023) v000}, doi = {10.25950/ec4fc8c4}, howpublished = {OpenKIM, \url{https://doi.org/10.25950/ec4fc8c4}}, keywords = {OpenKIM, Model, MO_680566758384_000}, publisher = {OpenKIM}, year = 2025, } @Misc{OpenKIM-MD:120291908751:006, author = {Stephen M. Foiles and Michael I. Baskes and Murray S. Daw and Steven J. Plimpton}, title = {{EAM} {M}odel {D}river for tabulated potentials with cubic {H}ermite spline interpolation as used in {LAMMPS} v006}, doi = {10.25950/233cb735}, howpublished = {OpenKIM, \url{https://doi.org/10.25950/233cb735}}, keywords = {OpenKIM, Model Driver, MD_120291908751_006}, publisher = {OpenKIM}, year = 2025, } @Article{tadmor:elliott:2011, author = {E. B. Tadmor and R. S. Elliott and J. P. Sethna and R. E. Miller and C. A. Becker}, title = {The potential of atomistic simulations and the {K}nowledgebase of {I}nteratomic {M}odels}, journal = {{JOM}}, year = {2011}, volume = {63}, number = {7}, pages = {17}, doi = {10.1007/s11837-011-0102-6}, } @Misc{elliott:tadmor:2011, author = {Ryan S. Elliott and Ellad B. Tadmor}, title = {{K}nowledgebase of {I}nteratomic {M}odels ({KIM}) Application Programming Interface ({API})}, howpublished = {\url{https://openkim.org/kim-api}}, publisher = {OpenKIM}, year = 2011, doi = {10.25950/ff8f563a}, } @Article{OpenKIM-MO:680566758384:000a, abstract = {A multi-scale study was carried out to quantify the effect of interstitial hydrogen concentration on plasticity in α-Fe. In this work, the influence of hydrogen on the screw dislocation glide behavior was examined across several length-scales. The insights obtained were integrated to provide an accurate continuum description for the effect of hydrogen on the dislocation based plasticity in polycrystalline α-Fe. At the outset of this work, a new FeH interatomic potential was formulated that enhanced the atomistic estimation of the variation in dislocation glide behavior in presence of hydrogen. Next, the dislocation core reconstruction observed due to the addition of hydrogen using atomistic simulations was validated with the help of large-scale DFT calculations based on the DFT-FE framework. Several atomistic simulations were carried out to comprehensively quantify the effect of hydrogen on the non-Schmid behavior exhibited during the dislocation glide in α-Fe. Finally, crystal plasticity simulations were carried out to understand the effect of hydrogen on the meso-scale deformation behavior of polycrystalline α-Fe.}, author = {Kumar, Pranav and Ludhwani, Mohit M. and Das, Sambit and Gavini, Vikram and Kanjarla, Anand and Adlakha, Ilaksh}, doi = {https://doi.org/10.1016/j.ijplas.2023.103613}, issn = {0749-6419}, journal = {International Journal of Plasticity}, keywords = {Hydrogen, Non-Schmid, Screw dislocation, Crystal plasticity, Multiscale study}, pages = {103613}, title = {Effect of hydrogen on plasticity of α-Fe: A multi-scale assessment}, url = {https://www.sciencedirect.com/science/article/pii/S0749641923000992}, volume = {165}, year = {2023}, }