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Abstract
Modeling and simulation is transforming modern materials science, becoming an
important tool for the discovery of new materials and material phenomena, for
gaining insight into the processes that govern materials behavior, and, increas-
ingly, for quantitative predictions that can be used as part of a design tool in full
partnership with experimental synthesis and characterization. Modeling and
simulation is the essential bridge from good science to good engineering, spanning
from fundamental understanding of materials behavior to deliberate design of new
materials technologies leveraging new properties and processes. This Roadmap
presents a broad overview of the extensive impact computational modeling has
had in materials science in the past few decades, and offers focused perspectives
on where the path forward lies as this rapidly expanding field evolves to meet the
challenges of the next few decades. The Roadmap offers perspectives on advances
within disciplines as diverse as phase field methods to model mesoscale behavior
and molecular dynamics methods to deduce the fundamental atomic-scale dyna-
mical processes governing materials response, to the challenges involved in the
interdisciplinary research that tackles complex materials problems where the
governing phenomena span different scales of materials behavior requiring mul-
tiscale approaches. The shift from understanding fundamental materials behavior
to development of quantitative approaches to explain and predict experimental
observations requires advances in the methods and practice in simulations for
reproducibility and reliability, and interacting with a computational ecosystem that
integrates new theory development, innovative applications, and an increasingly
integrated software and computational infrastructure that takes advantage of the
increasingly powerful computational methods and computing hardware.

Keywords: modeling and simulation, materials science, multiscale materials
modeling
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1. Introduction

Peter A Schultz1 and Erik van der Giessen2

1Sandia National Laboratories, Albuquerque, NM 87185, United States of America
2Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG
Groningen, The Netherlands

Modeling and Simulation in Materials Science and Engineering (MSMSE) was founded just
over twenty-five years ago to serve the materials community and chronicle the emerging field
of modeling and simulation in materials science. The march of Moore’s law in computers has
led to unprecedented computational power that has transformed modern materials science. A
coalescence of theory and high performance computing advances toward ‘virtual experi-
ments’ to obtain more realistic fundamental understanding and increasingly quantitative
predictions of materials behavior. Ubiquitous computing has enabled development of new
methods implemented into computational tools to delve into aspects of material behavior
previously inaccessible, inspired innovative applications that characterize new phenomena in
materials, and spawned interdisciplinary research that tackles challenging and complex
materials problems that span multiple scales, from the atomic to macroscopic.

Electronic structure codes have advanced from qualitative models limited to a few tens of
atoms to more realistic simulations with thousands of atoms. Molecular dynamics (MD)
similarly advanced from crude potentials in simulations with thousands of atoms to
increasingly sophisticated potentials that promise near-quantum accuracy in dynamical
simulations with billions of atoms. Scaling of atomic scale properties to meso-scale simu-
lations of microstructure evolution, e.g. through phase-field approaches, was born with
computing and has advanced as computing has advanced, making practical numerical
simulations of more realistic systems. New advances in simulation methods and powerful new
software enable applications that describe materials behavior with greater fidelity. Advances
in methods and practice lead to more predictive simulations that begin the journey from good
science to good engineering. As a natural consequence of these advances, multiscale
approaches in modeling are beginning to mature from unfulfilled aspiration toward meeting
the imperative to understand and characterize complex materials phenomena that span from
atomic-scale processes to macroscopic behavior. How materials modeling will integrate into
materials science generally is coming into better focus. It is an auspicious time to consider
how far this field has come in such a short time, and to chart the path forward for modeling
and simulation in order to make the greatest impact in materials science in the near future—a
Roadmap.

This Roadmap surveys the current state of modeling and simulation in materials, and offers
perspectives on the paths and opportunities that lie ahead. The impact of the burgeoning
enterprise of modeling and simulations is broad, from semiconductors to metallurgy, from
ceramics to polymers to composite materials, and also new methods and new software, new
practices and approaches. Our purpose is to present a set of useful perspectives for specialists
in each subject area, while also providing a general overview that weaves common themes
through this broad enterprise.

This Roadmap collection opens with the importance of standards and reproducibility in
molecular simulations. Reproducibility is a fundamental aspect of any good science, certainly,
but is a special challenge in modeling and simulations given the complexity of software,
design, and execution of complex simulation protocols with a multitude of settings. This
serves as an apt preamble to a contribution on the nascent movement to incorporate
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meaningful measures of uncertainties into sub-continuum scale simulations (see recent Focus
Issue on Uncertainty Quantification (UQ) in Materials in [1]). This is a prerequisite for
meaningful validation that is a foundation for ultimately predictive simulations of macro-
scopic behavior. This introduces a theme that has echoes throughout the Roadmap: the errors
in the model form that describes a core challenge of multiscale materials modeling. The path
from good science to good engineering relies on conducting reproducible simulations that
quantitatively explain phenomena, and then being able to document how far those results can
be trusted.

The field of materials modeling and simulation, by and large, is research into innovative
methods and applications at different scales and bridging between scales, repeated throughout
the ensuing body of this Roadmap. A contribution on phase-field methods describes how this
meso-scale approach intrinsically bridges from atomic-scale properties to microstructure and
macroscopic materials behavior, and outlines the ongoing challenges in the field. This theme
continues in the next contribution on multiscale modeling of plasticity, charting a course to
achieve quantitative understanding of microstructure-property relationships. At the atomistic
scale from which these methods attempt to bridge, the accuracy in MD simulations in
materials has been fundamentally limited by the fidelity of the interatomic potentials. The
next contribution illustrates how new computational capabilities are revolutionizing the
design of new interatomic potentials, based on machine learning (ML), bridging from
quantum mechanics to classical dynamics, with the tantalizing promise of quantum-accuracy
in large-scale dynamical simulations using classical interatomic potentials. The other lim-
itation of atomistic methods is accessing realistic time-scales; the next contribution discusses
temporal acceleration and multiscale simulations that couple atomistic and continuum
methods. An enduring debate in multiscale since this term was first coined is the relative
virtues and necessities of hierarchical versus concurrent multiscale; our next contribution
discusses the issues and challenges, emphasizing the need for new theory and numerical
methods along with development of large-scale numerical codes to express these methods.
Coarse-graining is a crucial tool to bridge through limitations of temporal and spatial scales.
As the next contribution describes, this is important for polymers and metals, for describing
dynamics and then defining a path to extracting thermodynamics. The modeling of amor-
phous materials brings a special set of multiscale challenges, as described in the section that
follows, bridging from the atomistic-molecular into the meso-scale. A different perspective
discusses the multiscale challenges in modeling heterogeneous microstructure.

The next series of perspectives discuss challenges of multiscale modeling in a sequence of
advanced materials systems that are inherently multiscale: structural composites for multi-
functional applications; for mechanical and dynamical metamaterials; and then the as yet
unfulfilled aspiration of climbing from atomistic simulations to predictive understanding at
the continuum of perhaps the most important of industrial materials—steel. This section
describes impediments in that path from what materials simulations can do now to what they
will need to do in order to be useful to steel metallurgy.

A recurring theme in these perspectives is the need for new methods and sophisticated new
software, the coordination of different methods at different scales, and the creation, man-
agement, and use of large data sets. Our final perspective is on the growing importance of the
cyberinfrastructure that is needed to support increasingly sophisticated and complex multi-
scale simulations of materials, and how developing and depending upon this infrastructure
and community of practice will fundamentally affect the culture and impact of modeling and
simulation in materials science.

The breadth of multiscale modeling and simulations in materials covered by MSMSE is
certainly too wide to be fully captured in a single article. In this inaugural Roadmap article in
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MSMSE, we intend a representative sample from across this wide enterprise, with perspec-
tives on methods and practices, on innovative approaches and applications at different scales,
on the challenges of multiscale, and the interaction of researchers with software and cyber-
infrastructure. The first twenty-five years of MSMSE in documenting this emerging enterprise
have been exciting. This Roadmap collection suggests that that the path ahead will be as well.

Acknowledgments
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2. Standards and reproducibility in molecular simulations

Ellad B Tadmor

Department of Aerospace Engineering and Mechanics, University of Minnesota, Minnea-
polis, MN 55455, United States of America

Status. What is the point of molecular simulations?19 Broadly speaking there are two types
of simulations: (1) simulations using ‘toy models’ designed to understand possible behaviors
of classes of materials, and (2) quantitative simulations aimed at predicting the behavior of a
specific technological material. There is a large gray area between these two extremes where
the simulation is presented as describing a real material (such as pure single crystal copper),
but typically this is unconfirmed. Molecular simulations suffer from the disadvantage that in
many cases direct experimental validation is not possible due to the very small material
systems that these simulations can model, and the very high loading rates necessitated by
stable integration of Newton’s equations of motion. The situation is improved in multiscale
methods [3] which can reach longer length and time scales, but even there, direct
experimental validation (or even comparisons among multiscale methods) are rarely done [4].

Peer review of articles reporting molecular simulations is based largely on evaluating whether
the simulations appear to have been performed correctly based on the procedures reported by the
authors and that the analysis and any theory developed to explain the results appear to be correct. It
is not realistic to expect reviewers to redo simulations to verify correctness. This is analogous to
peer review of experimental work. In both simulations and experiments, verification of the research
is left to follow up work where other researchers attempt to reproduce the results and build on them.
This requires that the readers of an article have all the information that they need to replicate the
work. For molecular simulations, this means a complete characterization of the system, boundary
conditions, and any simulation procedures used.

Current and future challenges. The ability to reproduce work is critical for the self-correcting
mechanism of Science as explained above. It is also of great value to researchers themselves.
Experimentalists are famous for maintaining meticulous lab notebooks that help them keep track of
the large number of experiments (many unreported) that are necessary in order to understand a
problem and obtain high-quality results. The field of molecular simulation (and simulations in
general) do not have a similar culture. Students are typically not taught how to maintain order
among the large numbers of preliminary simulations that they perform. Numerical simulations leave
a wake of directories full of inputs and outputs with little or no documentation. Even the researcher
who did the work (let alone other researchers) will find it difficult (and sometimes impossible) to go
back to an earlier step, understand what was done, and reproduce the results. This culture is
beginning to change with the emergence of workflow management tools such as AiidA [5] and
Jupyter [6]. These tools make it possible to document a simulation and in principle reproduce it20.

19 The term ‘molecular simulations’ refers to computer simulations based on classical Newtonian mechanics in
which interatomic models (IMs) approximate the interactions between the nuclei of the atoms comprising the
material. This is in contrast to first principles calculations, such as density functional theory (DFT), that incorporate
electrons and are based on quantum mechanics. For more on these methods, see [2].
20 Workflow management tools have still not addressed a problem specific to computer simulations, which is the
dependence of the results on the shifting landscape of an evolving operating system and external packages and
libraries. Even if a simulation code and its input is archived, the results could differ because a library that the code
uses has been updated on the host computer. There are methods for ensuring a complete reproducible snapshot of a
computation environment, but effectively incorporating these approaches into workflow management remains a
challenge.
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The key challenge for workflow management systems when it comes to classical
molecular simulations is the interatomic model (IM). The IM is a computer program that
receives as input a configuration of atoms (including information on coordinates, species,
charges, etc) and outputs the energy and its derivatives (e.g. the negative derivative of the
energy with respect to coordinates are the forces on the atoms). IMs have traditionally been
implemented within specific simulation codes, such as the MD code LAMMPS [7]. However,
this makes it impossible to ensure reproducibility (since simulation codes and IMs are
continuously mutating) and very difficult and error prone to transfer IMs between different
simulation platforms. A recent article [8] discussing software reuse and reproducibility used
the materials simulation community use of LAMMPS as an example of dysfunction.

Advances in science and technology to meet challenges. The issue of reliable IM archiving
and portability is being addressed by the Open Knowledgebase of IMs (OpenKIM) project
[9–11]. OpenKIM is a cyberinfrastructure funded by the National Science Foundation hosted
at https://openkim.org. OpenKIM archives IMs, verifies their coding integrity through a
series of ‘Verification Checks’ (e.g. the forces returned by the IM are checked against
numerical differentiation of the energy), and tests them by computing their predictions for a
variety of material properties using codes uploaded by the community. As a member of
DataCite [12], OpenKIM issues a unique permanent digital object identifier (DOI) to every
IM archived in openkim.org. Any modifications to an IM, such as parameter changes due to
an improved fit, lead to a version change in openkim.org and a new DOI. The DOI can be
cited in publications and incorporated into workflow managers to ensure that the exact IM
cited in the work is downloaded and used, thereby ensuring reproducibility.

The issue of portability is addressed in OpenKIM through the development of an
application programming interface (API) for communication between simulation codes
(simulators) and IMs [13]. Simulators and IMs conforming to the KIM API work seamlessly
together. The KIM API is cross-language compatible, currently supporting Fortran, C, C++
and Python, and is lightweight with negligible performance overhead in most cases. The KIM
API is currently supported by a number of major simulators including ASAP, ASE,
DL_POLY, GULP, LAMMPS, and the multiscale Quasicontinuum method [14]. The
existence of this standard is important to ensure technology transfer throughout the
community (by allowing an IM to be used in a range of codes) and encourages the
development of new molecular simulation methods since by conforming to the KIM API new
codes have instant access to a large pool of IMs.

Concluding remarks. Molecular simulations and multiscale methods are coming of age.
Increasing computing power and the development of new highly-accurate IMs—and in
particular machine-learning based IMs—is now making it possible to perform predictive
simulations for real materials at meaningful length and time scales (see section 6). The
potential inherent in these developments is being held back by current practices in the field.
To advance, the molecular simulation community must embrace computing best practices,
which include methods to ensure reproducibility and standards to allow for rapid sharing of
new technologies.
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3. UQ for materials

Stephen M Foiles

Sandia National Laboratories, Albuquerque, NM 87185, United States of America

Status. The goals and expectations of computational materials science have evolved over
the last few decades. Underlying this evolution is the range of, often unspoken, objectives of
modeling. In some cases, the goal is to develop qualitative understanding of fundamental
mechanisms and how those mechanisms interact to produce macroscopic behavior. The
emerging goal is to inform materials design and qualification processes, where being
quantitatively predictive is important. An increasing emphasis on computational materials
science as a key component of the engineering process is exemplified by initiatives such as
Integrated Computational Materials Engineering [15], the Materials Genome Initiative or
NASA Vision 2040 [16]. In this role, modeling is employed to make decisions as opposed to
expanding understanding. For modeling to be useful in a decision-making environment, an
assessment of the reliability of the model predictions is essential. Thus, the growing interest in
the development of UQ for materials modeling. Meaningful UQ is a prerequisite for
meaningful Validation, the assessment of if—and how far—the results of a simulated model
can be trusted to predict reality.

In thinking about UQ, it is helpful to identify the different types of uncertainty [17]. The
simplest source of potential uncertainty is reliability of the numerical implementation. A
portion of this is Verification, assessing that simulation codes correctly solve the equations
that underlie the calculation. Associated with this is the practitioner’s attention to detail in the
application of the code, e.g. in such considerations as adequate k-point sample for electronic
structure calculations or sufficient simulation time for MD simulations of statistical quantities
such as correlation functions.

Another class of uncertainty in modeling predictions is aleatory uncertainty. This
uncertainty arises due to inherent randomness in a physical process. An example of this is the
variation in material properties for items that are processed in nominally the same manner.
Though processing conditions are the same, each instantiation will differ microscopically. For
example, while the grain structure may be similar, it will not be exactly the same in each case.
This will lead to differences in the properties of each item. One way to treat aleatory
uncertainty is to describe the response in terms of probability distributions. This is in contrast
to traditional approach to materials modeling that focuses on prediction of average behavior.

Current and future challenges. The more challenging class of uncertainty is epistemic
uncertainty, the prediction uncertainty that results from our incomplete knowledge. A simple
aspect might be a lack or poor knowledge of key material input parameters, say the elastic
constants of a new alloy. A more difficult aspect of epistemic uncertainty, fundamental to a
multi-scale approach to modeling of materials behavior, is model form error. As reiterated
throughout this Roadmap, behavior of the material at more detailed scale is synthesized into a
coarser scale model. The use of a reduced, approximate model form clearly can lead to errors
[18]. Model form errors are more difficult to assess than are parametric uncertainties.
Parametric uncertainties can be estimated by sampling techniques. The error from neglect of
detailed physics aspects usually cannot be directly quantified. Phase field models abstract
constitutive relations from atomistic data (next section). The form of an interatomic potential
determines how faithfully a MD calculation, neglecting detailed electronic structure, can
replicate chemistry described by a density functional calculation (see section 6), Electronic

Modelling Simul. Mater. Sci. Eng. 28 (2020) 043001 Roadmap

8



structure calculations themselves introduce model form errors in choice of density functional
that can only be crudely estimated [19]. The form of that model dictates the fidelity of the
information transfer between scales.

A key challenge of UQ in materials modeling is that it requires a culture shift in the
modeling community, especially at smaller, sub-continuum length scales. Historically, UQ
issues have generally only received minimal attention. This is beginning to change. There is a
small but growing body of literature addressing methods for UQ in materials modeling. For
example, a recent study demonstrated that DFT codes have small numerical uncertainties by
comparing results for a suite of model calculations [20]. Symposia at national meetings of
major societies such as MRS and TMS as well as focused conferences are addressing the role
of UQ and its future directions. Such signs are encouraging. Two changes will help drive this
culture change. The first is in the education of material modelers. While attention to numerical
issues is often discussed, the broader issues need to be incorporated into academic curricula.
Scientific journals, such as Modeling and Simulation in Materials Science and Engineering,
also have a role to play. Similar to how many journals require the inclusion of error bars on
experimental data points, peer review criteria should be expanded to require a discussion of
estimates of uncertainty in computational models or in their absence a justification for
omitting them for that paper.

Advances in science and technology to meet challenges. In considering a path forward for
the development of UQ methodologies for materials, there are two types of challenges
moving forward. The first assesses the impact of the approximations at a given length/time
scale associated with a certain computational technique. For example, classical MD
simulations are based on an assumed interatomic potential or force field [21, 22]. Quantifying
the range of results from MD simulations from a sampling of similarly realistic interatomic
potentials would be a key component of an overall UQ method. Based on recent UQ
symposia, the majority of on-going efforts address this class of problems [23]. This is a
sensible starting point for the field because the questions are more clearly defined.

The second broad challenge arises in the context of multi-scale materials modeling [24].
Conceptually, information obtained from simulation(s) at smaller length/time scales are
synthesized and used to inform models at higher scales [25–27]. Inherently, there is a loss of
information from the smaller scales. The challenge is quantifying or at least bounding the
prediction uncertainty that results from a chain of modeling modalities moving from
electronic scales up to engineering scales [28, 29]. While conceptual multi-scale modeling
hierarchies exist, complete quantitative multi-scale modeling hierarchies are actually rare
[30, 31]. A major challenge is the transformation of information between the scales. As a
simple example of this, consider the treatment of temperature at different scales. At mesoscale
and continuum scales, temperature is typically a scalar field variable. In atomistic simulations,
thermal energy exists in the random kinetic energy of the particles and temperature is a
derived quantity or a boundary condition. While the treatment of temperature is generally
understood, this demonstrates the type of conceptual challenge that can exist moving between
scales. Similarly, in looking at mechanical response, the dynamics of ensembles of atoms is
mapped onto a set of characteristic defects (vacancies, interstitials, dislocations, grain
boundaries, K). The evolution of these defects is often further synthesized into higher level
constructs like shear bands. Such sequences are useful if they capture the essential behavior,
but can fail if the synthesized information fails to capture essential features. A UQ analysis of
such a hierarchy is clearly a formidable challenge which requires sophisticated error
propagation methods [32, 33]. Another potential use of UQ concepts is in the reverse
direction, using UQ analysis and observations at higher length scales to pinpoint knowledge
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gaps at lower length scales or poor model form used for information transfer [34]. And then
integrating this UQ into a meaningful system of Validation to certify the predictive accuracy
of materials simulations in prescribed regimes. Addressing these questions represents the
long-term research area for UQ in the context of materials modeling.

Modelling Simul. Mater. Sci. Eng. 28 (2020) 043001 Roadmap

10



4. Phase-field: bridging scales

Ingo Steinbach

Interdisciplinary Centre for Advanced Materials Simulations (ICAMS), Ruhr-University
Bochum, 44801 Bochum, Germany

Status. The phase-field method over the years has established as the method of choice for
simulation of microstructure evolution at the nano- and mesoscopic scale. Nevertheless, the term
‘phase-field’may provoke some misunderstanding. Traditionally it denotes the region in an alloy
phase-diagram where an individual crystallographic phase is stable for a given composition,
pressure and temperature. It had been firstly used by Langer in 1978 [35] for the solution of a
nonlinear wave equation, known in physics as the ‘soliton’ [36]. This field theoretical solution
was applied to dendritic solidification, a phase transformation problem, therefrom the name
‘phase-field’. The soliton solution simply helps to propagate the solidification front in a
numerical simulation, meaning the change of phase from solid to liquid over space and time. The
width of the transformation front, the ‘diffuseness’ of the phase-field, in this regard has no
physical meaning. The theory is agnostic of an intrinsic scale. It lives at the meso-scale, i.e. large
compared to atoms, but small compared to the sample dimensions, the size of a casting in
solidification. Even 40 years later, there is still a debate about the interpretation of ‘phase-field’
as a microscopic order parameter model, or an elegant numerical tool. For a more in-depth
review of the history, see [37–39]. The future of ‘phase-field’ clearly lies in ‘making true its
promises’. It is considered a thermodynamically consistent theory in the tradition of variational
approaches of classical mechanics. It offers a consistent framework to incorporate interfaces and
kinetics into thermodynamics [40]. Augmented by most advanced models of diffusional and
advective transport, micro-elasticity and plasticity, magnetism and ionic mass transport, it will
bring the important phenomenon of ‘evolving microstructures’ into full-field models of materials
behavior. A phase-field model transfers atomistic scale properties, like interface energy
anisotropy, into mesoscopic scale microstructures. From here it transfers into macroscopic scale
materials properties. The microstructures and their evolution during processing and service
determine materials properties. They are evaluated by direct numerical simulation of materials
behavior under load. In the following section, I will highlight some research issues and
challenges for future developments. They are based on my own experience and interest. The
applicability of ‘phase-field’ as a scale bridging approach is, however, much broader.

Current and future challenges. Phase-field, as discussed above, poses a promise: We have a
thermodynamically consistent theory to simulate materials behavior by solving well-posed
partial differential equations (PDEs) on computers. The solutions for 3D problems deserve
huge computational resources. Strategies of massive parallelization, intelligent time stepping
strategies as well as efficient adaptive meshing schemes are developed to a high level. I
consider these issues as ‘technical’ and have no doubt that in the case of real application the
necessary resources will be made available. The real challenge, the ‘big research issues’, lie in
the integration of best available constitutive relations for bulk materials with most advanced
models for interfaces, their static and kinetic properties. Integration in this respect means that
‘bulk’ and ‘interface’ must be considered in common! The best example is diffusion
controlled dendritic solidification: The morphology of the dendritic structure is determined by
diffusion in the bulk melt around the growing solid, but is intrinsically linked to interface
energy anisotropy living at the atomistic scale of the solid liquid interface. Solid state
interface properties are even more involved, and their impact on microstructure evolution is
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out of question. Martensitic and mixed mode transformations critically depend on the balance
of bulk and interface related phenomena. ‘Phase-field’ offers a platform, but it does not
provide the solution by itself. It requires good input from atomistically informed constitutive
relations and experiments.

A big challenge, however, is the consideration of the whole life cycle of a material: from
production through service to failure (see figure 1). Materials are not ‘dead bodies’. Their
microstructure evolves continuously during the whole lifetime cycle of the material including
refurbishment and, in general, also recycling. So, in general, different routes of production, as
sketched in the figure, will lead to different microstructures and to different properties. Phase-
field simulations have been applied to investigate most individual steps in this cycle: from
solidification to failure. Solidification from the homogeneous melt sets the initial structure, at
least for almost all metallic materials. The microsegregation, created during solidification, will
persist in most conventional heat treatments, even after rolling, if slow diffusing elements as
Mn in steel are considered. Further transformation steps should consider this information as a
starting configuration. In particular, predictive simulation of crack initiation and failure will
only be possible, in general, if important microstructural information through the lifetime
cycle of the material is considered. This consistent through-process simulation is still a
challenge for future applications. Phase-field simulation in combination with most advanced
micromechanical models offer the possibility to attack this challenge. First steps in this
direction by atomistically informed full-field simulation of quenching, tempering and testing
of tempered martensite have been published recently [41, 42].

Advances in science and technology to meet challenges. The phase-field method as discussed
above incorporates interfaces and kinetics into thermodynamics. Since it is a continuum method
formulated as partial differential equations and resting on sophisticated constitutive relations, it
requires a maximum of input compared to other methods, as discussed in figure 2. For bulk
thermodynamic properties well established CALPHAD databases exist. Here the challenge is to
address also metastable regions in the phase diagram as well as new phases and exotic materials.

Figure 1. Scheme of two different production cycles《from solidification to failure》.
The microstructure will evolve during the whole life-time cycle of a material,
dependent on temperature and various environmental loads. The microstructure
memorizes the whole history of production and service, which determine the property
of the material. The properties at the end of different cycles will be different!.
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First principles calculations can help to supplement additional information like chemical
mobilities, activation barriers for nucleation and fault formation. Databases of interfacial
properties, static and dynamic, are still rare and in the state of development. Databases for
mechanical properties are diverse. Mostly they relate to ‘materials’ as a homogeneous medium,
not specific to the microstructure and the properties of individual components of the
microstructure. In all these cases, improved data and models are needed urgently. Also
commonly accepted standards of constitutive relations and materials data have to be developed.
Actual activities in data mining and materials informatics must be utilized. The output of phase-
field simulations to macroscale simulations would be local constitutive relations considering
microstructural information. A last and very important issue is numerical accuracy and
benchmark problems to be accepted by the community [43]. In both cases, the phase-field
community must team up with the communities of applied mathematics and continuum
mechanics, in particular micromechanical modeling and simulation, see the following section 5,
to realize the necessary demand of accuracy and efficiency in solving the coupled multi-physics
problems or evolving microstructures in real materials.

Concluding remarks. The phase-field method bridges scales in several respects. It bridges
from atomistic ordering to long-range transport. It bridges from microstructures to macroscopic
materials properties. It bridges from physics to continuum mechanics and to engineering
applications. Future application of phase-field can be found in fundamental research as well as
in applied research. Fundamental aspects relate to pattern formation in various classes of phase
transformations. Applied aspects relate to everyday engineering problems in metallurgy,
processing of ceramics or functional materials such as magnetic microstructures, or
ferroelectrics. Also problems in geoscience and biology are in the range of applications. All
of this in combination with best constitutive relations, best data and best numerics.
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Figure 2. Scheme of the《number of input》needed for materials simulation on
different scales. While《first principles calculations》need no input besides the
materials composition, its structure and external conditions of pressure and
temperature, continuum scale simulations need to be told everything about the material
they can treat. Here《full-field models》,like phase-field, which resolve the complete
microstructure, need a maximum of input, yet promise a maximum of information
as well.
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5. Multiscale modeling of plasticity
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Status. Multiscale models of plasticity aim to predict the deformation behavior of metals
and alloys suitable for engineering applications in the plastic regime (e.g. yield surface, strain
hardening, texture evolution, creep rate, ductility limit, fatigue life) based on fundamental
physics of atoms and crystalline defects. In a broader context, the goal is to reach a
quantitative understanding of the microstructure-property relations, sufficient to enable
prediction of beneficial and detrimental microstructural features. Successfully developed
multiscale models of plasticity will have profound impacts on a wide range of engineering
applications and industries. For example, they can inform the design of manufacturing
processes, such as extrusion and forming, leading to better predictions of margins and safety
factors respective to different failure modes. Multiscale models of plasticity can accelerate the
design of high-performance materials, such as those used in high temperature applications
like gas turbines and lightweight materials used in aeronautic and automotive industries. They
can predict the performance of materials under extreme environments (such as inside nuclear
reactors) in which experiments are very difficult or impossible to perform. They are also
expected to play a vital role in establishing metal additive manufacturing (3D printing) as a
reliable process to produce parts within acceptable property tolerances.

While many different plastic deformation mechanisms exist in crystalline solids (e.g.
twinning, phase transformations, grain boundary sliding), slip induced by dislocation motion
is dominant under most conditions. Therefore, a predictive model of plasticity requires
understanding fundamental dislocation physics and dislocation interactions with other defect
microstructures in the material (e.g. other dislocations, solute atoms, point defects, radiation
defects, precipitates, grain/twin boundaries). Because these microstructural processes span a
wide range of length and time scales, they exceed the capacity of any single computational
model. Many models have been developed, such as atomistic models based on first-principles
(e.g. DFT) and empirical potentials (e.g. MD), discrete dislocation dynamics (DDD) and
continuum dislocation dynamics at the mesoscale, and crystal plasticity (CP) models at the
polycrystalline microstructural scale [44]. These models need to be meaningfully connected
to each other to obtain a predictive framework for multiscale modeling of plasticity. The most
outstanding problem today is the lack of quantitative connections between CP models with
the lower-scale dislocation models. As a result, existing CP models used in engineering
applications are still phenomenological, while evidence continues to mount that they can
make inaccurate predictions under realistically complex scenarios [45, 46].

Current and future challenges. There are three major challenges that must be overcome, in
order to establish a successful framework for multiscale modeling of plasticity. The first
challenge is to connect computational models of defect dynamics and experimental
measurements of plastic deformation. A direct comparison between predictions and
experiments under identical conditions would not only provide much needed validation of
theory but also calibrate model parameters that may be impossible to determine from first
principles. A promising approach is to start from simpler cases (e.g. pure single crystals) and
progress towards more challenging ones (e.g. alloys then polycrystals), as illustrated in
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figure 3. The connection may be first established at high strain rates (e.g. >102 s−1), by
directly comparing DDD simulations [47] with Kolsky bar or micro-pillar compression
experiments, and then expanded towards lower strain rates (e.g. <10−1 s−1).

The second challenge is to quantitatively connect computational models at different
scales, starting from a pure single crystal, as shown in figure 4. As always, the purpose is to
benchmark and calibrate an upper scale model against a more fundamental, lower scale
model. The key premise of the DDD method is that the response to straining of a statistically
representative ensemble of dislocations can be assembled from the motion of its individual
constituent dislocations. It remains unclear if and how much is ‘lost in translation’ in
transferring knowledge gained in atomistic simulations of individual dislocations to DDD
simulations of CP. Recent advances in direct ultra-scale atomistic simulations of CP [48] has
reached simulation cell sizes of ∼1 μm containing up to 106 dislocation lines. These ultra-
scale simulations, coupled with efficient and accurate methods to extract dislocations from
MD snapshots [49], allow direct comparison with DDD simulations in terms of, e.g.
dislocation network structure, dislocation mobility and multiplication rates. Such comparisons
provide a critical test case and a useful proving ground for improving physical fidelity and
predictive accuracy of DDD simulations.

The third challenge is to embrace the complex nature of real engineering alloys, i.e.
realistically dirty materials. Keeping track of all the interactions between various defects is a
daunting task. Even if an atomistic simulation could be carried out for an arbitrary defect
configuration (e.g. dislocation-GB interaction), the total number of distinct configurations is
too large to be practically considered. Therefore, the fundamental physics concerning the
rules for defect interaction need to be accounted for in a statistical rather than an exhaustive
manner. A theoretical framework is still lacking for constructing sufficiently accurate
statistical models.

Advances in science and technology to meet challenges. The convergence of several
breakthroughs in computational and experimental capabilities in recent years has moved us
much closer toward the goal of physics-based plasticity models. Further advances along these
lines are needed to realize the full potential of multiscale modeling of plasticity.

Figure 3. The accessible domain of strain rate and material complexity for existing
computational models and experimental techniques for probing materials response at
different strain rates. The dashed arrow emphasizes the opportunity to quantitatively
connect DDD simulations with high strain rate experiments on single crystals.
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First, the emergence of new computing architectures, such as graphical processing units
(GPUs), has made a major impact in many fields of science and technology. For example, the
use of GPUs, together with advanced time-stepping algorithms, has resulted in orders-of-
magnitude increase in the efficiency of DDD simulations. MD simulations of metal plasticity
[48] on million-core CPUs has enabled statistically meaningful comparisons between MD and
DDD models. Therefore, it is essential for the developers of plasticity models across all scales
to promptly take advantage of new computational architectures as they emerge, and to
develop new algorithms that scale well on these new platforms. For example, further
efficiency gains by several orders of magnitudes are needed for DDD simulations to reach
quasi-static strain rates for fcc metals.

Second, the recent breakthroughs in microscopy have revealed microstructural details
about materials that were previously unavailable during plastic deformation. For example, the
near-field high-energy x-ray diffraction microscopy technique [50] at the advanced photon
source has allowed the local lattice orientation of polycrystals to be followed as a function of
plastic strain, and be compared with CP predictions. Time is ripe for quantitative comparisons
between predictions from defect dynamics models and the wealth of microstructural
information revealed by modern experimental techniques, e.g. 3D transmission electron
microscopy (TEM), Laue micro-diffraction, Bragg coherent diffraction imaging (BCDI), high
resolution digital image correlation, etc. Such comparisons would be greatly facilitated by the
ability to directly simulate experimental images from the snapshots of the defect dynamics
models [51].

Third, as both experiments and simulations are generating data at an unprecedented rate,
tackling metal plasticity using the data science/ML approach appears highly promising. The
adoption of data-driven methods is already happening in the broader field of computational
materials science [52], e.g. the search for desirable alloy compositions based on first-

Figure 4. Connection between computational models of plasticity at different scales.
The arrow with solid line indicates a robust connection from MD to DDD by coarse-
graining using the DXA tool. The arrows with dashed lines indicate connections that
need to be established in the future.
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principles datasets in the Materials Genome Initiative, as well as in the more specific context
of dislocation simulations [53]. To take advantage of data analytics for understanding
plasticity, it is necessary to develop platforms and protocols (e.g. through collaboration with
computer/data scientists) that facilitate the exchange and mining of microstructural data,
which are highly diverse and complex. High throughput on-the-fly computational techniques
should be developed and combined with defect/microstructure simulations to efficiently span
vast parameter spaces and to sample statistically representative ensembles. The goal is to
identify key features and to test hypotheses generated by computation and experiments to aid
the development of physics-based continuum models of plasticity.

Concluding remarks. Given the rapid progress in computational and experimental
techniques, a new generation of multiscale models of CP is expected to emerge over the
next 10-to-15 years that would connect defect physics with engineering-scale predictions, are
validated by experiments, and offer valuable recommendations for materials processing and
design. We note that multiscale models making precise microstructure-property predictions
solely from first-principles without any ‘tunable parameters’ are perhaps unrealistic and likely
unnecessary for engineering applications. Instead, the goal of the multiscale model should be
to provide physics-based answers to questions (e.g. regarding qualitative or semi-quantitative
trends) for specific material systems given the available experimental observations at various
scales. Finally, we note that once multiscale models and coarse graining techniques are
developed, UQ—in terms of errors introduced by specific models and by the coarse graining
algorithms used to upscale information—will be an essential step to confidently providing
such physics-based answers.
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6. A new dawn for interatomic potentials

Gábor Csányi

Engineering Laboratory, University of Cambridge, Cambridge CB2 1PZ, United Kingdom

Status. Simulating materials, especially fluids, using MD started soon after the birth of
electronic computing. In time, this new tool allowed not only the calculation of very complex
material properties, such as space and time correlation functions, but also to conduct
‘computational experiments’, in which no one is entirely sure what would happen before it is
run [54].

In parallel, the ever more precise understanding of the interactions between large
numbers of electrons and nuclei, as embodied in so-called first principles quantum mechanical
methods and their computational implementation has revolutionized our ability to predict the
properties of solid materials and individual molecules, and to use these predictions to
understand phenomena at all length scales, including alloy design, corrosion, spectroscopy
and transport properties, just to name a few [55].

Although such ‘bottom-up’ methods are gaining ground all the time, the length and/or
time scales involved in MD simulations that are worth doing (hundreds to thousands of atoms
for thousands to millions of individual time steps) impose such high computational costs that
many such simulations are arguably out of reach for all but users of the largest
supercomputers. In situations when the alternative, a length scale free description in terms
of continuous fields is certain to fail to capture the correct mechanisms, we find the niche for
using ‘interatomic potentials’, i.e. empirical, simplified models of forces acting on atomic
nuclei, via a potential energy written as an explicit function of nuclear positions. The potential
is supposed to include implicitly the energies of the electrons that are assumed to have relaxed
into their ground state and follow adiabatically the slower evolution of nuclear coordinates.

Except in a few very simple situations, there are no theories on what functional forms
such a potential should use. Practical models have been made using a combination of
intuition, guess-work, and some trial and error. The assumed functional forms got more
complicated over the decades, and nonlinear empirical parameters proliferated. Up until
recently, it was widely felt that such potentials have reached a ‘plateau’, in terms of accuracy,
reliability, and in general usefulness. Even for simple materials, although trends between
them were captured, specific defect energies were too far off to be predictive, and the ability
to draw valid conclusions relied in a heady mix of experience, artful use of transferability
(fitting to one property and calculating another) and no doubt in some cases, just luck. More
complex materials, such as oxides, interfaces, chemically modified surfaces, were largely out
of bounds.

A new direction was taken starting about ten years ago, using the newly popularized tools
of machine learning (ML): non-parametric function fitting in many dimensions (being
conscious that when it comes to the number of dimensions, often one person’s many is
another’s few, in this case I use ‘many’ to refer to tens to hundreds of dimensions) [56, 57].
Casting the problem of constructing interatomic potentials as a special kind of ‘learning task’
in which training data is generated using expensive first principles electronic structure
calculations. This kind of fitting is sometime referred to as ‘surrogate modeling’. There are
some key differences with respect to the typical problems in ML. On the one hand, not only
an arbitrary amount of essentially noise-free training data can be generated (at a fixed cost per
item), but even the location of the training data can be chosen arbitrarily. On the other hand,
accuracy demands are rather high: it turns out that ‘99%’ accuracy in the potential energy of a
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100-atom system is not particularly useful, and in order to predict properties better than
existing models, ten or hundred times more accurate fits are often needed. Furthermore, such
accuracy measures are not even that useful if understood in the statistical sense: while a model
that makes a large error only very occasionally might be good for many independent tasks,
this is not the case for much of materials modeling. For example, a large error in a MD
simulation occurring just at a single time step could throw off the entire subsequent trajectory
(for example by trapping it in an unphysical local minimum) and thus render the whole
simulation useless. The key here is that these models are not evaluated on inputs from known
and independently defined and generated probability distributions, but the models themselves
are used to actually generate the distributions (or measures) on which the observables are
evaluated. Transitions driven by the models (e.g. using Markov chain Monte Carlo (MC) or
MD) are used to generate invariant measures, and errors in transitions that are small or rare in
the statistical sense can lead to large errors in the invariant measures and even to broken
ergodicity and thus to large errors in observables.

The current status in the capability of these new ML potentials is roughly as follows.

• Both shallow neural networks, using a wide variety of atomistic descriptors, and kernel
learning (and also linear regression), using specially designed basis functions, have been
successfully used to fit accurate potentials for a wide range of materials (see articles in
[58] for recent examples). Impacts on real materials science problems are beginning to
appear, notably for amorphous materials among others [59].

• The data are total energies and gradients, typically computed using DFT, or sometimes
even more accurate wavefunction based quantum chemical methods.

• A large fraction of published works are still ‘proof of fit’ type, with little attempt at
transferability: the accuracy of the potentials are tested on configurations very similar to
the training set, often generated by the same protocol.

Current and future challenges. A critical ingredient of the non-parametric fits is the way in
which the nuclear positions are represented: this needs to respect basic symmetries of the
target potential energy function with respect to translation, rotation and permutation of like
atoms. Almost all representations in current use start with a fixed radius neighborhood of an
atom, represented as an ‘atom-density’ and project this onto a rotationally invariant finite
dimensional basis, using e.g. spherical harmonics. (The one exception uses wavelet
transforms to capture the global atom-density on multiple length scales [60].) This brings with
it the first of a number of challenges.

How can long range electrostatic (and dispersive) interactions be made part of the ML
model? If the radius of the neighborhood in the representation is significantly enlarged, the
dimensionality of the fit quickly becomes unmanageable, and the rotational invariants also
lose their appeal. With a finite radius, not only is electrostatics not properly described, but
long range charge transfer is also missed.
A disconcerting feature of ML models is their ‘fragility’: predictions made even not very far
outside the region of the training data are essentially random, that is the ‘price’ paid for
accuracy within the region of training data using generic functional forms with a very large
number of free parameters. The corresponding challenge is thus:
How can we ensure that ML potentials, with their very narrow range of transferability, do
not lead to non-sensical predictions, which would contaminate simulation results? Or,
turning it around, can we ever make ML potentials that correctly describe a material in a
very wide range of (perhaps all sensible) configurations? A first attempt of this is in [61],

Modelling Simul. Mater. Sci. Eng. 28 (2020) 043001 Roadmap

19



albeit for a single component material (silicon) and using a ‘hand built’ database. Can we
design protocols for automatically generating training databases suitable for a given
scientific problem? Can we quantify the extent to which a training database covers the
relevant part of configuration space? The distance metric defined between configurations
that is implicit in kernel-based fits would appear to be useful here. And finally, can we
create a single ML model that covers a wide variety of materials?
There are many problems in atomic scale materials modeling that cannot be tackled just by
having a potential energy function of atomic positions. The challenge there is to extend the
non-parametric high dimensional fitting approach to include:
Spin degrees of freedom and magnetic interactions, electronic entropy, multiple oxidation
states, excited electronic state potential energy surfaces, etc. These are situations where the
electrons which were eliminated in defining interatomic potentials appear to make a
comeback, but at the same time the reintroduction of fully explicit electronic degrees of
freedom may not be necessary.

Advances in science and technology to meet challenges. We now indicate some possible
directions that could be taken in order to overcome the above challenges. For molecular
systems, electrostatics has long been described by multipole expansions, and the
corresponding response functions could be calculated and fitted using ML models. For
solids, this is considerably more challenging, because there is no unique way to partition a
strongly bound solid into a disjoint set of interacting electrostatic multipole sources. ML
could be used to find the best such partitioning, and to fit its response functions, and such a
model can then be added onto the current machinery for fitting the remaining short-range
interactions. An example along these lines has been published originally for NaCl [62] and
subsequently for other ionic materials.

The challenge of transferability is perhaps the thorniest. Its general solution, not only in
materials modeling, but more widely in ML, might be in the form of creating models that
operate in a hierarchy of spaces, starting with lower dimensional representations which afford
less accurate but robust predictions, and sequentially refining this using richer representations
and more accurate fits. For atoms, a good guess at some of these lower dimensional
representations might be the interaction of pairs of atoms, then triplets, etc (a well worn idea
in materials modeling, see also [63] for an example use with ML), but to go further we need to
glean the right representations from the data itself to avoid the exponential blowup of the
body-order expansion.

Finally, ML potentials may be able to link the worlds of reactive materials modeling,
dominated by DFT that more or less correctly describes bond forming and bond breaking,
with the world of wavefunction based quantum chemistry, which is the right approach when
exquisite accuracy is required e.g. sufficient to obtain equations of state and dynamical
properties of molecular liquids. Ultimately, along with the advances in modeling hard
materials, this approach might also lead to the ‘holy grail’ that is a reactive organic molecular
force field with the ‘gold standard’ accuracy of coupled cluster theory. See [64] for a first stab
at this.
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7. Temporal acceleration in coupled continuum-atomistic methods
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Status. In recent years, a large number of atomistic-continuum coupling methods have been
developed with the goal of reproducing the results of the fully-atomistic model at lower
computational cost, which is particularly important in problems where a large size of
computational domain is required, e.g. to deal with long-range stress fields around crystalline
defects. Moreover, since the time scales of dynamics simulations of the atomistic system such
as MD are limited to sub-microseconds due to the short vibration period of atoms (typically
orders of picoseconds) and many systems exhibit rate-dependent behaviors (e.g. hardness in
nanoindentation, friction in sliding test, etc), it has been a long-time dream to run dynamics
simulations of atomistic models for a time length closer to macroscopic scales. While several
noble schemes have been developed to extend the MD time scale, including graphics
processing unit (GPU)-based algorithms [65–69], it was just recently that temporal
acceleration methods began to be combined with coupled atomistic-continuum approaches.
Below the scope of these temporal and spatial multiscale methods will be discussed by
reviewing three outstanding examples.

The first example is the study of temperature-dependent dislocation nucleation at the
crack tip of face-centered cubic metals by Warner and Curtin [70]. For spatial coarse-graining
they employed the finite-temperature CADD (Coupled Atomistic Discrete Dislocation)
method (figure 5(a)), where atoms in the atomistic domain dynamically evolve as in MD with
some atoms near the atomistic/continuum interface thermostated to prevent unphysical wave
reflection whereas the continuum fields are updated in a quasistatic way using the mean
positions of the interface atoms. The acceleration in time was achieved using the parallel
replica method [66] where statistically equivalent multiple systems are simultaneously
monitored until one of them exhibits a transition. When it happens, the total simulation time is
calculated as the sum of the times of all the replica systems. The acceleration factor scales,
thus, linearly with the number of replicas, i.e. the computational resources that can be
allocated to run these replicas at the same time.

The second example, called hyper-QC, was constructed by combining the finite-
temperature quasicontinuum (QC) method (hot-QC) for spatial extension with the
hyperdynamics method for temporal acceleration [71, 72] (figure 5(b)). In hot-QC, an
effective potential for representative atoms containing all atoms in the atomistic domain and a
small subset of atoms in the continuum domain is defined based on the local-harmonic
approximation of the free energy, which can reproduce the canonical ensemble equilibrium
properties. These representative atoms, whether in the atomistic or continuum domains,
dynamically evolve as in NVT MD simulations. Moreover, a bias potential is added to the
original potential energy surface to reduce the energy barriers so that transitions are expedited.
It was formally proved that under the assumptions of the transition state theory,
hyperdynamics simulations [65] can preserve the original state-to-state dynamics, i.e. the
biased system visits each metastable state with the same probabilities as in the original
system. The acceleration factor depends on the quality of the bias potential.

The third example was based on the maximum entropy (max-ent) formalism and the
mean field approximation, which provide the governing equations for the dynamic evolution
of the mean positions of atoms [73, 74]. Since the short-time atomic-scale vibrational modes
are already averaged out in this formalism, the resultant trajectories are smooth on
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microscopic time scales so that much larger time steps than used in conventional MD
simulations can be used, leading to the extension in overall time length. The spatial coarse-
graining was realized by adopting the cluster-QC method, which is a full non-local version of
the spatial multiscale method (figure 5(c)).

In short, there exist dozens of different coupled atomistic-continuum methods, but only a
few of them have been extended for accelerated dynamics simulations. A couple of these
temporal and spatial multiscale methods employ accelerated schemes that are developed for
fully-atomistic models so that atomic-scale thermal vibrational modes are still retained. In
contrast, there also exists a method where the coarse-graining is applied to the time-domain
such that the simulated dynamics is for the mean positions of atoms enabling longer-time
evolutions.

Current and future challenges. Whereas a proper dynamic coupling of atomistic and
continuum domains is an emerging area of research including several key challenges such as
heat exchange between domains (from atomistic to continuum and vice versa), in this section
we focus only on the time acceleration issue. An atomistic system in the solid state often
evolves through ‘infrequent’ thermally-activated transitions from one potential energy basin
(state) to another, i.e. the system spends most of time near basins before quickly transiting
into other adjacent states. This is the case where all energy basins are separated by large
energy barriers as seen in figure 6(a) and, for example, dislocation nucleation is understood as
a thermally-activated process. Many acceleration schemes aim to make such transitions occur
at an expedited pace while preserving the relative transition probabilities among the
neighboring states. In light of the Arrhenius type dependence of the transition rate on energy
barrier and temperature, exp(−ΔV/kBT), two natural ideas for accelerating thermally-
activated events are either lowering energy barrier (as in hyperdynamics [65]) or increasing
temperature (as adopted in temperature-accelerated dynamics (TAD) [67]). As discussed
above, hyperdynamics was coupled with a spatial multiscale method (hyper-QC). Since the
boost factor in both hyperdynamics and hyper-QC depends on the bias potential, the key
challenge in hyperdynamics is to develop bias potentials that are computationally
inexpensive, but rigorous enough not to distort the original state-to-state dynamics. The
original method proposed by Voter using the eigenvalue/eigenvector of the Hessian matrix is
very versatile, but its computational cost is not trivial [65]. Even though several alternative

Figure 5. Illustration of various temporal and spatial multiscale methods. The
rectangular box surrounded by the solid lines represent the atomistic domain and the
triangles are the FEM (finite element method) elements used for spatial coarse-graining.
In (a) CADD, dark colored circles represent the interface atoms and the atoms
surrounded by dashed lines are thermostated atoms. In (c) CQC each disk represents
the cluster associated with a representative atom (dark colored atoms). For simplicity,
clusters are drawn only for several representative cases.
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cheaper schemes have been proposed, they are not as robust as the original method. Thus, it
remains a major challenge to develop a versatile, but less expensive bias potential for more
popular application of this method. On the contrary, the acceleration in TAD does not require
any modification of the potential energy surface, but can be achieved by simply raising
temperature, although running a TAD simulation is not trivial because of some
computationally expensive tasks such as saddle point searching. Unlike hyperdynamics or
TAD, the parallel replica method does not employ any assumption or demand high-cost
computational tasks, but its acceleration factor is limited by the available computational
resources.

Another critical consideration in temporal acceleration is that not all dynamic evolutions
of the atomistic system is through infrequent transitions between states surrounded by large
energy barriers. Instead, the potential energy surface may have energy barriers of various
scales as exemplified in figure 6(b), making the strategy of the aforementioned acceleration
schemes very inefficient. Moreover, in many cases systems are ‘driven’ by time-changing
external parameters (e.g. indentation, fracture test, uniaxial tensile test, etc) so that the
potential energy landscape also changes in time. As illustrated in figure 6(c) the initial energy
barriers may increase or decrease as time passes by and new wells may emerge with others
disappearing. In all these cases multiple time-scales are so entangled that selectively
accelerating only ‘infrequent’ events would be difficult or provide little gain in simulation
time. Therefore, it is a major challenge to develop a more comprehensive theoretical
framework in temporal acceleration that can deal with not only infrequent events, but also
systems with multiple entangled time-scales.

Advances in science and technology to meet challenges. With regard to the direction of
temporal acceleration, the formulation based on the dynamical evolution of the mean
positions (the max-ent formalism) appears very promising, but it is an open question whether
the trajectory predicted by the max-ent formalism also agrees with the state-to-state dynamics
from the direct atomic-time scale simulations. A more thorough unified theoretical
formulation would able to answer these question in the future. Moreover, it should be
noted that for the past several decades computational science and engineering research has
been greatly benefited from the advancement of computer technology in both hardware and
software. This progress in computing capability will remain as a key factor in the
development of atomistic simulations.

Concluding remarks. To sum up, employing temporal acceleration in coupled atomistic and
continuum methods is a highly promising strategy to broaden the range of potential
applications of atomistic methods by providing a more efficient utilization of computational

Figure 6. Illustration of various potential energy landscapes. (a) Potential energy basins
are all separated by large barriers. (b) The corrugation of the potential energy surface is
irregular having energy barriers of various scales. (c) The potential energy landscape
can dynamically evolve as external parameters change in time.
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resources. So far only a few spatial multiscale methods have been coupled with the temporal
acceleration methods. Coupling temporal acceleration and spatial coarse-graining strategies
has synergistic effects to each other so that any computational gain obtained from the spatial
coarse-graining scheme enables longer simulations and vice versa (see also section 9). In
harmony with the continuous improvement of computing power, we envision that the
theoretical and methodological development in atomistic simulation will continue to provide
an opportunity for deeper understanding of our physical world.
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8. Hierarchical versus concurrent scale-bridging techniques

Dennis M Kochmann

ETH Zürich, CH—8092 Zürich, Switzerland
California Institute of Technology, Pasadena, CA 91125, United States of America

Status. Computational multiscale modeling techniques are essential for accurate predictions
of how a material’s macroscopic, effective properties emerge from microscale mechanisms
and architectures in solids and structures (here and in the following, the terms ‘macro’ and
‘micro’ do not refer to particular length scales but to the, respectively, larger and smaller
scales of interest to be linked by multiscale techniques). One of two strategies is commonly
pursued: hierarchical scale-bridging assumes a separation of scales between micro- and
macroscales and is hence based on the passing of effective information between scales.
Classical examples are homogenization techniques which average over a representative
volume element (RVE) at the microscale in order to link average kinematic and kinetic
variables—either a priori or on the fly. Such techniques can be applied at several levels and
have been successfully deployed not only at continuum scales but also down to the atomic
scale where averaging in a statistical sense allows for the extraction of effective material
behavior to be used as an input at larger scales [75, 76]. If a separation of scales cannot be
assumed (e.g. when localization into macroscale features occurs on the microscale, or when
material and structural feature sizes merge as in nanoscale metamaterials), then concurrent
scale-bridging techniques are the method of choice. These decompose the simulation domain
into two or more subdomains, each of which treated simultaneously by a different model.
Microscale resolution is thereby confined to subdomains of interest, while—away from those
regions—a less accurate description is introduced for computational efficiency. An example is
the CADD method [77] which couples atomistic regions (treated by MD) with continuum
regions (described by DDD). MAAD [78] couples a total of three constitutive frameworks:
tight-binding, MD, and finite elements (FEs); see figure 7. Alternatively, the concept of
coarse-graining is a hybrid technique that applies efficient continuum concepts to a lower-
scale, discrete constitutive description. An example is the family of QC methods which retain
full atomistic resolution in spatial subdomains of interest, while continuum-level interpolation
schemes are used as kinematic constraints in the remaining subdomains in order to
significantly reduce the number of degrees of freedom and thus gain efficiency [79]. The list
of hierarchical and concurrent multiscale techniques is long and continuously growing, which
demonstrates the demand for such methods in the computational design of materials systems
—from optimizing process parameters to obtain favorable microstructures in conventional
materials to engineering the microscale architecture of novel metamaterials with tailored
macroscale properties. Each scale-bridging technique provides a compromise between
accuracy and efficiency, and a myriad of open challenges invite further developments.

Current and future challenges. The following provides a non-exhaustive list of current and
future challenges in this field.

• Homogenization at continuum scales is probably the oldest multiscale technique and has
matured considerably with the use of computational techniques such as the FE method.
Yet, dynamic homogenization (i.e. the homogenization of time-dependent material
behavior including inertial effects) still presents challenges, especially in the presence of
nonlinearity and transient effects. With the emergence of metamaterials, this challenge
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has gained momentum (see also section 13), and only few recent approaches have
demonstrated success [80, 81].

• Homogenization requires the identification of an RVE whose size is usually chosen for
reasons of efficiency without meeting its statistical requirements. Statistically similar
RVEs have been proposed for continua [82], while a proper definition of stochastically
arranged matter (such as network models for soft tissues) is challenging and calls for
non-trivial compromises between ensemble averaging and ensemble enlargement.

• If there is no or limited separation of scales (i.e. if micro- and macroscale characteristic
feature sizes become comparable), higher-order homogenization and enriched continua
provide powerful tools that have not been fully explored. Fracture (or, more generally,
localization) on the microscale is a related problem where the separation of scales
gradually fails as microscale cracks grow into macro-cracks. This calls for RVE
adaptation methods and related techniques that apply in case of limited scale separation.

• Computational efficiency has been gained by techniques of model order reduction [83],
which reduce the microscale number of degrees of freedom by introducing intelligent
kinematic constraints specific to a given microstructure. Extensions to, e.g. finite
deformations, dynamics, and FFT-based spectral representations are ongoing
developments.

• Discrete-to-continuum coupling techniques are essential when descending to the smallest
of all scales, since atomistic and quantum mechanical techniques (such as MD and DFT,
e.g.) are inherently discrete in their description. While spatial coupling has been
accomplished in a variety of ways (see the MADD, QC, CADD, BDM, BSM, CAC, etc,
techniques), an ongoing challenge arises in the context of temporal scale-bridging (see
e.g. section 9 and section 7). For example, atomic ensembles evolve at the level of
femtoseconds, governed by the discrete equations of motion and with atomic vibrations
indicating the system temperature as known from statistical mechanics. Continuum
models operate at significantly larger time scales (as required by most applications),
governed by deterministic systems of PDEs and with temperature being a continuous
field. Linking those two distinct descriptions is challenging and has been addressed, e.g.
by applying continuum thermodynamics at the level of atoms [84] or by phase-space
formulations and statistical averaging [85]. While upscaling in space is a traditional
concept in multiscale modeling, upscaling in time of the system kinetics is a major
challenge across scientific disciplines. For example for the coarse-graining of atomistic
systems, modeling heat and mass transport as well as defect interactions over relevant

Figure 7. Schematic examples of (left) hierarchical scale-bridging by passing
information from lower to higher scales (assuming a separation of scales), (center)
concurrent scale-bridging to couple molecular dynamics and finite elements, (right) one
of the first concurrent scale-bridging examples by Abraham et al (1998)
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time scales still poses major challenges. First derived for complex fluids, the general
equation for non-equilibrium reversible-irreversible coupling [86] has been one promising
upscaling avenue in cases where a separation of scales applies (see also section 9).

• Any concurrent or hybrid scheme (especially those coupling discrete and continuous
subdomains) introduces model interfaces that produce spurious physics in terms of, e.g.
wave reflection and refraction, or spurious forces. These have often been dealt with in an
ad hoc fashion. Therefore, rigorous approaches to reducing the impact of model interfaces
are needed.

Advances in science and technology to meet challenges. It is difficult to list specific
required advances as the field of concurrent and hierarchical multiscale modeling is broad
and, as described above, faces diverse challenges that are both theoretical and
computational (see [87] for a review). Dynamic homogenization, intelligent order
reduction techniques, as well as discrete-to-continuum coupling scenarios call for new
theory and numerical schemes. A practical challenge is the availability of numerical codes,
which are primarily developed by and restricted to individual research groups. Open-source
multiscale codes are still the exception. In addition, available codes have often grown over
decades with consequences for programming languages, specific computing architectures,
etc so that their suitability for and performance on current computing architectures is limited
(see section 15). High-performance codes for real-time 3D simulations are still a rare find.
Combining several distinct codes is oftentimes problematic and requires application
programming interfaces. The scalability of such heterogeneous numerical codes is a further
computational challenge. A natural challenge in both hierarchical and concurrent scale-
bridging schemes is the multi-physics nature of the problems at hand when going across
wide ranges of length and time scales—oftentimes combining concepts from, among others,
mechanics, chemistry, materials science, statistical physics, and computational science.
Current and future solutions must effectively integrate multiple concepts and thus call for
interdisciplinary developments, also leveraging advances in data-based approaches (big-
data or data-driven modeling), where high-fidelity multiscale models can serve as data
generators in lieu of costly experiments.

The recent advent of additive manufacturing techniques for multiscale and multi-material
architectures has enabled the creation of mechanical metamaterials with features sizes across
many length scales—ultimately dissolving the distinction between solids and structures (see
section 13). Especially this growing area requires theoretical techniques and computational
tools to predict, optimize, and reverse-engineer the effective metamaterial properties on
demand. Especially the inverse problem of optimizing (meta-)materials architectures across
scales towards a tailored, superior effective performance is an active area of research [88–90],
and rigorous inverse design methods, especially for the complex nonlinear, dynamic, and
inelastic macroscale material performance, are needed in conjunction with powerful
multiscale techniques.

Concluding remarks. With only few exceptions, hierarchical and especially concurrent
multiscale modeling techniques have not yet made their way into industrial settings and have
remained of academic interest, primarily because of the associated computational expenses.
Overcoming this disconnect is a further—not purely technical—challenge with great potential
benefits for both sides. This is where highly-efficient computational techniques that make use
of both intelligent multiscale modeling theory and fully exploiting available computing
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architectures (as well as suitable verification, validation and UQ protocols) will be game-
changing.
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9. Temporal coarse-graining and the emergence of irreversibility

Markus Hütter

Eindhoven University of Technology, Department of Mechanical Engineering, Polymer
Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands

Status. Modeling the behavior of materials ideally encompasses several aspects at the same
time: (1) It gives a description as compact as possible that represents a sufficiently large set of
experimental observations. (2) The model is formulated in terms of physically intuitive
quantities. (3) The model establishes links between the small-scale building blocks from
which the material is made and the experimental observations, thereby potentially enabling
tailored materials design. (4) The model has the potential for extrapolation, i.e. predictions.

Multiscale modeling has emerged as a route for addressing the above issues, because it
takes into account different levels of detail, e.g. continuum as well as the discrete constituents
of the material, and couples these levels either sequentially or concurrently (see section 8).
Another approach for describing complex material behavior is coarse graining (see figure 8).
Here, the goal is to start with a fine level of description where one has good physical
understanding, and then to transition to a coarse level with less degrees of freedom. While the
fine-level degrees of freedom are eliminated, the coarse-graining procedure aims at
representing the most relevant physics appropriately on the coarse level. In general, coarse
graining refers to both spatial and temporal scales. In this contribution, the temporal aspects
are emphasized, to raise awareness and to underline its significance for bottom-up approaches
for materials design.

The coarse-graining procedure addressed in this contribution has its roots in statistical
mechanics and non-equilibrium thermodynamics [91]. Equilibrium statistical mechanics is a
beautiful and well-known realization of a coarse-graining technique, and it is the basis of
many powerful computational tools. However, if one shifts the focus to beyond equilibrium,
time scales and lack of full equilibration begin to play a crucial role. A particularly interesting
question in this respect is how irreversibility on the coarse level (e.g. in the form of a viscosity
or diffusion coefficient) emerges from the reversible Hamiltonian mechanics of the atoms.
This emergence of irreversibility has been established for close-to-equilibrium situations in
terms of so-called fluctuation-dissipation relations [91–93]: fluctuations on the fine level (e.g.
in the particle-based shear stress) gives rise to the coarse-level transport coefficients (e.g.
shear viscosity). In the last two decades, these relations have been generalized to hold not
only close to equilibrium [91, 94, 95], by a combination of statistical mechanics and
projection-operator techniques. This serves as a basis for powerful simulations that are
suitable for beyond-equilibrium simulations [96]. However, in order to take most benefit of
these advances for the computer-aided molecular design of materials, some points need
further consideration.

Current and future challenges. For coarse graining, the choice of variables on the coarse
level is of great importance for two reasons. First, as can be seen in classical statistical
mechanics, it affects the static properties, i.e. the free energy. While the energy of the system
is identical on the fine and coarse levels if the coarse-level variables are sufficiently rich,
different sets of coarse-level variables will give rise to different entropies; the less detailed the
coarse level, the larger the entropy. This is because the entropy is about the comparison
between two levels by, roughly speaking, counting the number of fine-level states that are
compatible with the given coarse-level state. However, at least equally important for the non-
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equilibrium coarse-graining is the fact that by lumping fine-level detail into coarse-level
quantities, the latter usually have slower time-evolution. The cases usually dealt with are such
that there is a so-called separation of time-scales between the two levels. This implies that the
rapid motions on the fine-level are noticeable on the coarse level as stochastic only, which
enters the coarse-level model as transport coefficients, as a realization of the fluctuation-
dissipation theorem.

The current challenge consists in choosing the coarse-level variables appropriately,
implying that the neglected fine-level dynamics indeed occurs on much shorter times, i.e. that
it can be considered as stochastic on the coarse level. Current practice is to choose coarse-
level variables, execute the coarse-graining procedure, and check in hindsight whether the
separation of time scales is indeed respected. This procedure has been followed on the
example of dislocation-based plasticity, the fine and coarse levels being those of many
discrete dislocations and of average densities of dislocations [97], respectively. The results
indicate that there is no separation of time-scales. In another case, namely polymer melts, it
was found that time-scale separation depends subtly on the choice of the coarse-level
variable [96].

The following questions in relation to the time-scale separation should be addressed: Can
for any system a set of coarse-level variables be found such that time-scale separation holds?
On the one hand, can one formulate guidelines, or even a constructive (possibly iterative)
procedure to work towards such a set of variables? On the other hand, if such a set of coarse-
level variables that respects the time-scale separation does not exist or is not needed, what is a
proper systematic coarse-graining procedure?

Figure 8. Illustration of coarse graining between different levels of description i with
respective dynamic variables Vi.
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Advances in science and technology to meet challenges. Coarse graining is goal-oriented
and often subjective, in the following sense. Goal-oriented in the sense that, along the lines of
the first paragraph, the model should be as simple as possible for describing the situations of
interest. However, this requirement does not determine the level and variables of the model
uniquely, but rather these may be chosen by the modeler, which adds the subjective point.
While I believe that insight and intuition are indispensable in coarse graining, the result might
still not be successful, and it could be useful to get support from other methods. It is not
completely clear what those could be, but some possible directions for further development
are given in the following.

One should carefully re-examine the essential steps in the derivation of the current
coarse-graining procedure. For example, recently, a generalization has been proposed from
diffusion processes to Markov processes that satisfy detailed balance and a large-deviation
principle [98]. Further generalization is sought for cases where time-scale separation is
lacking.

Concepts developed for pattern recognition could be useful for coarse graining. While
humans are perceiving their environment by recognizing patterns continuously, it remains to
be examined how pattern-recognition techniques can be employed to improve, in practice, the
above mentioned coarse-graining procedure. Computer algorithms will naturally be part of
this endeavor, in terms of machine-learning algorithms for pattern recognition [99]. It should
be emphasized, however, that the purpose of computer simulations in this context is to
support advancement of the theory; one often learns and gets insight from examples and
applications. The idea cannot and should not be that large-scale computer simulations on the
fine level combined with ML entirely replace physics-based coarse-graining. The latter
remains an indispensable conceptual step, not only to foster fundamental understanding, but
also to help tailor the design of materials with improved properties.

Concluding remarks. This contribution is concerned with coarse graining, in which a coarse-
level model is derived based on fine-level information, by way of statistical mechanics and
projection-operator techniques. In this procedure, the separation of time-scales is essential. It
is advocated that the interplay between the choice of coarse-level variables on the one hand
and the time-scale separation on the other hand be examined further. Specifically, guidelines
or even constructive (possibly iterative) procedures are sought to work towards making good
choices of variables in order to alleviate the violation of time-scale separation as much as
possible. Furthermore, strategies for dealing with systems that lack time-scale separation are
desirable.
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10. Systematic and quantitative linkages between molecular and mesoscopic
modeling of amorphous materials

Jörg Rottler
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Status. The mechanical properties of amorphous metals, polymers, and oxide glasses
exhibit a remarkable degree of universality. Through extensive particle scale modeling with
either atomistic force fields or generic models for glass formers (Lennard-Jones mixtures and
bead-spring polymers), it is now widely accepted that these materials exhibit heterogeneous
elasticity at the nanoscale and share a common elementary mechanism of plastic deformation:
swift localized irreversible rearrangements involving small (10–100) groups of particles occur
in the background of a homogeneously deforming medium (see figure 9) [100]. These ‘shear
transformations’ (ST) occur preferentially at predisposed ‘soft’ locations that can be
associated with local structural features of the glass, such as the coordination of particles in
the first neighbor shell or low shear moduli. The elastic response of the surrounding medium
to such an ST exhibits anisotropic (quadrupolar) long-range behavior that is well described by
the Eshelby inclusion model. Quantitative differences between materials with different
chemical interactions are reflected in different types of disorder, size and energy scales of
STs, and relaxation rates [101].

In a constant strain rate deformation, amorphous metals exhibit a maximum stress at
strains of a few percent. This yield stress is therefore much larger than in crystalline materials.
However, the stress maximum is frequently followed by a discontinuous transition in which
shear localizes along shear bands, leading to brittle behavior. The tendency towards
localization is controlled by the initial degree of annealing. Glasses that avoid fracture and
flow, do this in a very intermittent fashion. Their stress-strain curves consist of elastic
branches punctuated by sharp stress drops that signal individual or collective plastic events.
All glasses undergo structural recovery (physical aging) at elevated temperatures, during
which structural relaxation times increase. Plastic deformation rejuvenates the glass, and the
molecular mobility increases by several orders of magnitude. This effect is best documented
in polymer glasses and can be understood from a combination of repositioning and tilting of
the underlying potential energy landscape. Post-yield deformation of polymer glasses differs
from metallic and oxide glasses in one important aspect as polymers can exhibit strain
hardening due to their macromolecular character. Glassy strain hardening originates not from
entropic elasticity as in rubbers and elastomers, but rather from dissipative work (i.e. breaking
of intermolecular van der Waals bonds) performed by polymer chains forced to deform
affinely in the glassy matrix.

Mesoscale elastoplastic models (EPM) were introduced about 25 years ago [102], and
coarse-grain amorphous solids into a lattice of blocks whose size corresponds to a typical ST.
The blocks are endowed with (visco)elastic properties and a local yield threshold: upon
yielding, they redistribute their load non-locally and anisotropically throughout the medium
with an elastic propagator of the Eshelby form, G(r, θ)∼cos(4θ)/r d (in the plane of the ST),
with d the dimension of the system [103]. Yielding is either treated as an activated event
(thermal glasses) or occurs upon crossing a threshold (athermal dynamics). Such cellular
automaton models reproduce not only the bulk rheology of amorphous solids, but also enable
the study of mechanisms of strain localization and the critical behavior at the yielding
transition, namely the statistics of avalanches (distribution of stress drops) that dissipate
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energy collectively. Both reciprocal space and finite element methods (FEM) have been
constructed to solve numerically for the long ranged elastic interactions in these models. This
level of modeling is akin to a treatment of CP at the level of explicit dislocation dynamics.

Current and future challenges. For simulations at the atomistic scale, a persistent challenge
(common for all simulations of condensed matter) consists of reaching realistic quench and
deformation rates. On the timescales accessible with conventional MD, the prepared glasses
are positioned too high on the energy landscape, and some thermal relaxation processes will
therefore be pre-empted at high strain rates. Novel swap MC methods alleviate the former
issue, but they are not yet generically applicable to all glass formers. While much has been
learned about the nucleation, form, elastic consequences and correlations of STs with
structural features of the amorphous packing, a point that still requires clarification is their
relationship with the related concept of shear transformation zones, which considers STs as
pre-existing defects in the structure that can be polarized, i.e. they are endowed with an
orientational degree of freedom that reflects the local orientation of a group of atoms [104].
Gaps also remain in our understanding of the statistical properties of the mechanical noise
produced by plastic activity and its role in activating plastic events. While particle simulations
can capture the formation of transient slip bands through accumulations of multiple STs, it
remains challenging to push them into a regime where permanent shear bands, their
mechanisms of formation and dependence on parameters such as temperature or the degree of
initial disorder can be studied.

EPMs formulated to date are believed to capture all generic qualitative features of
amorphous plasticity, but they are not yet able to make quantitative predictions for specific
materials. To this end, they must be systematically informed from atomistic simulations. This

Figure 9. Local plastic activity in a flowing glass at low temperature. Their character as
Eshelby shear transformations is revealed by quadrupolar symmetry in their
correlations (inset).
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requires measurements of statistical properties such as the disorder distribution of local
dynamical moduli, and also nonlinear quantities such as local yield thresholds and their
spatial correlations. The phenomenological rules governing transitions between elastic and
plastic states must also be better validated, possibly by connecting them to the energy
landscape of a mesoscopic region. Lastly, EPMs must realistically model the dynamical
propagation of yield events instead of imposing instantaneous elastic interactions and address
the time scales associated with thermal activation. In the athermal limit, considerable debate
still revolves around the universality class of the yielding transition, the nature of the
associated control and order parameters, and different mechanisms contributing to transient or
permanent shear localization and their dependency on control and material parameters. EPMs
are also needed when spatially heterogeneous flow patterns arise or when spatial correlations
are of interest.

Advances in science and technology to meet challenges. The MSMSE community has
expended considerable effort on accelerated MD techniques (parallel replicas, temperature
acceleration, metadynamics; see also section 7) [105] and to efficiently explore the energy
landscape of solids at zero temperature (activation relaxation technique). Unfortunately, most
of these methods do not work well in the extremely rugged and highly variable energy
landscape found in glasses. A deeper understanding is needed on the conditions and regimes
of applicability of such methods.

Progress could be facilitated by collecting information about various models and analysis
tools in a common repository that can be shared between different research groups. This could
include characterization of the differences between various interaction potentials (flavors of
Lennard-Jones mixtures, EAM potentials for metallic glasses and force fields for oxide
glasses), diagnostics for detecting and characterizing plastic activity, and the extraction of
locally heterogeneous properties like elastic moduli and yield thresholds.

EPMs similarly have been constructed in slightly different implementations by different
research groups. It would be helpful if a common standard were developed and easily shared.
While physicists have focused mostly on aspects of critical behavior in the athermal limit,
materials scientists have emphasized viscoplastic effects at an operating temperature much
closer to the glass transition. The next generation of EPMs should unify these regimes
through the use of efficient dynamical FE codes to solve the Cauchy momentum equations in
two and three-dimensions. This could benefit from synergy with the well-established field of
dynamical FEM modeling in solid mechanics and by establishing standard simulation codes
similar to LAMMPS for MD.

Concluding remarks. The ability to relate the rheological or plastic flow properties of
amorphous materials to a microscopic description that can be treated with statistical methods
would constitute major progress in materials physics. Theory and modeling of amorphous
plasticity has been hampered by the absence of easily identifiable structural signatures of the
elementary carriers of plasticity. On the other hand, amorphous materials do not exhibit
texture that introduces an additional length scale in CP. It should therefore be easier to
directly link mesoscopic and constitutive continuum models that operate on a mean field
level.
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11. Challenges in modeling of heterogeneous microstructures

Alexander Shluger

University College London, Gower Street, London WC1E 6BT, United Kingdom

Status. Electronic, electrochemical and photovoltaic devices are systems of interfaces
between different materials. Transistors, memory cells, capacitors, photovoltaic and fuel cells
produce and conduct electrical current in heterogeneous environments of several materials.
Due to constant scaling, the component materials of these devices are often nm thick films
and their properties are strongly affected by interfaces with other materials. A typical example
is shown in figure 10 [106]. The electronic properties of thin oxide films, such as one in
figure 10, vary widely with their morphology and with the morphology of the interface. The
film morphology, in turn, is very sensitive to small variations in chemical composition and to
deposition and post deposition processing [106]. Most as-deposited thin oxide, nitride or
chalcogenide films are amorphous and annealing at high temperature leads to their partial or
full crystallization and formation of polycrystalline films. Structural disorder in amorphous
films and grain boundaries in polycrystalline films help to reduce strain developing at the
interface due to misfit of structural parameters of interfacing materials (see figure 10).

Materials modeling has been instrumental in understanding the microstructure and defect
properties of heterogeneous microstructures in ceramics, Si/oxide and metal/insulator
interfaces [107]. The earlier works on metal/oxide interfaces emphasized the role of image
interactions, which has later been included in atomistic simulations. More recent work is
using DFT and MD to predict atomistic interface structures. There are broadly three
approaches employed for constructing semiconductor/oxide and metal/insulator interfaces.
All of them employ a periodic model along the interface plane and therefore are subject to
constraints when trying to accommodate two or more materials in a periodic cell of certain
dimension. Some simulations combine lattice matching with annealing using MD. This
mimics a growth process and gives additional freedom for the interface atoms to relax. The
most popular approach to constructing metal/oxide interfaces is using static DFT calculations
for systems constructed by lattice matching [108] for different values of oxygen pressure
[109]. The main criterion of the interface stability is the interface free energy as a function of
oxygen pressure [110]. Yet another approach is based on simulating the film growth via
atomic layer deposition or chemical vapor deposition using kinetic MC and other
techniques [111].

Current and future challenges. Although atomistic modeling to date had established several
important structure-property dependencies, the main challenge remains in identification and
characterization of the realistic interface models as opposed to simplified (and possibly even
unstable) structures and characterization of interface defects. Electrically active interface
defect states may lead to degradation of device characteristics, such as the threshold voltage,
the on-current, or the surface carrier mobility. Creation of an interface naturally leads to
breaking some of the bonds in the interfacing materials. To further improve the interface
quality, the number of dangling bonds can be further reduced by annealing the system in
forming gas and passivation with nitrogen or hydrogen atoms.

Different communities use different methods of preparation and propose different ideas
regarding the structure of these films. For example, the thermodynamic approach [112]
suggests that an amorphous structure of oxide overgrowths on metals may be stabilized with
respect to the corresponding crystalline oxide, up to a certain critical oxide-film thickness.
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This results from the reduction of mismatch strain for the amorphous oxide film (in contrast to
an epitaxial or semi-coherent crystalline oxide film). The value of critical oxide-film thickness
when initial amorphous oxide film transforms into a crystalline oxide film depends on the
substrate orientation, temperature and metal–oxygen system under study [112]. However,
density, thickness and morphology of thin films strongly depend on the substrate and method
of deposition, anneal temperature, as well as other factors, such as oxygen and water pressure,
which makes simulation of these structures challenging.

The biggest challenges for modeling defects in non-crystalline films are related to the
variations in their local environment due to disorder and position with respect to interfaces as
well as accounting for effects of interface strain and space charge. Using periodic cells is
preferred in order to avoid border effects which may affect defect characteristics. However,
this makes the amorphous structures quasi-periodic and induces constraints on the structural
relaxation accompanying defect creation. To credibly predict distributions of properties,
calculations at many sites in amorphous structure and of many models are required. If
modeling amorphous films and interfaces is difficult, partial or complete crystallization of as-
grown amorphous films and formation of grain boundaries and dislocations provides further
challenges. Yet, there are no robust, comprehensive computational tools to predict and design
how physical and functional properties of heterogeneous systems can be controlled by their
microstructure.

Advances in science and technology to meet challenges. Advances in applications of high
resolution TEM, scanning probes and spectroscopies to studying the atomistic structures of
hetero-structures, grain boundaries in ceramics as well as in determination of the 3D shape of
nanoscale crystals with atomic resolution, make observations of atomistic structures and
defect chemistry increasingly possible. Despite this, atomistic modeling of nanostructures is
still dominated by the use of periodic models to study bi-crystalline arrangements of grains
and adhesion between two nanocrystals. There are attempts to bridge nano- and microscale
simulations through coarse graining methods [113]. However, much microstructure modeling
is still based on Voronoi polyhedra, although some 3D FE modeling of poly-crystalline
ceramics has been done using more realistic microstructures (e.g. [114, 115]). Some of the
existing methods provide deep insight into the microstructure of materials but are rarely
linked with their function. To improve design and performance of existing devices and
develop future devices requires developing novel multiscale modeling tools combined with
detailed experimental studies that can establish how materials properties depend on

Figure 10. Bright field STEM image of cross-section of RRAM cell [106]. Red arrows
are pointing out columnar grains visible in the electrode layers. The top Pt layer is
needed for focused ion beam (FIB) sample preparation. The devices consist of TiN top
and bottom electrodes, which are approximately 10 and 15 nm thick, respectively. The
oxide layer is approximately 35 nm thick. A sub-5 nm mixing layer is visible at the
bottom electrode.
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microstructure and chemical composition and how they change under electrical stress, heat
and humidity. This requires the following.

(1) Deriving atomic-scale and coarse-grained models and databases of structures and
properties of nanostructures, grain boundaries and metal/insulator interfaces, character-
izing them by stability, structural topology, composition and electronic structure. This
can be achieved using statistical approaches (informed by both simulation and
experiment) to limit the search space to those interfaces which occur most frequently
in polycrystalline materials and at contacts with electrodes.

(2) Developing new methodologies to simulate at the atomic level the response of individual
structural features (interfaces and grain boundaries) and of complex systems to external
fields, thermal gradients and mechanical constraints, and provide predictions and
interpretation of experimental data.

(3) Bringing together atomic level detail for materials properties and processes in multilayer
systems and validating multi-physics methods using 3D microstructural simulations
(using, e.g. FE methods) to predict the response of full microstructures to electric
currents, heat flow and mechanical constraints for electronic, ferro-, thermo- and piezo-
electric ceramic materials and multifunctional structures.

(4) Investigating the role of dopants, impurities and vacancies in determining the material’s
function using e.g. grand canonical MC simulations at various fixed and uniform
chemical potentials of O2 (oxygen pressure), H20 (humidity), impurity concentrations to
sample the structures and compensation mechanisms resulting from growth in variable
oxygen/water pressure.

Concluding remarks. Most materials in electronic devices are either amorphous or made up
of a complex assembly of small crystals (grains) which, together with the boundaries joining
them, constitute the microstructure. Furthermore, to perform in electronic devices materials
need electrical contacts; those are metallic or semiconducting and have their own
microstructure. Material function is therefore multi-scale and is intimately linked to
microstructural processes (diffusion, electron transfer, chemical reactions) at the internal grain
boundaries and interfaces to electrodes or contacts. The roles of microstructure (particularly
texture) are well established in metallurgy, but much less understood in functional ceramics,
particularly when it comes to linking the atomic structure of polycrystalline materials to their
function. The challenge is to merge this information at various length scales and to develop a
fundamental understanding of the evolution of the microstructure and its effect on properties,
such as thermal-mechanical response, electrical response, degradation, and failure. A step-
change can be achieved only when it is possible to predict the effect of changing the
microstructure on system function and so guide the materials processing route.
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12. Challenges of multiscale modeling of structural composites for
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Status. The application of fiber-reinforced composites in structural applications has grown
continuously during the last forty years owing to their outstanding stiffness and strength as
well as low density in addition to a reasonable damage tolerance. They have become the
standard materials for high add value structural components in aerospace, sports, automotive,
petrochemical, naval architecture, etc. From the viewpoint of manufacturing and design,
composite materials present two singular features. Firstly, manufacturing of the material and
of the component is carried out simultaneously, opening the possibility to optimize the
properties of the material for each specific application. Secondly, fiber-reinforced composites
are highly anisotropic and present a hierarchical structure with different failure mechanisms
which depend on the length scale and the loading mode. Thus, accurate prediction of the
strength of composite structures using standard simulation tools was not possible, leading to a
very costly pyramid of experiments (beginning with composite plies and ending with full
components) to qualify new materials and certify components.

These limitations were overcome in recent years with the development of novel
multiscale modeling strategies [116, 117]. They are based on the consideration of three
different length scales to account for the deformation and damage mechanisms in the
composite material. The first one is the ply level, at which the control length scale is the fiber
diameter (≈10 μm). The homogenized properties of the ply (stiffness, strength and toughness)
can be obtained by means of computational micromechanics from the properties, volume
fraction and spatial distribution of the matrix and fibers in the ply. This information is passed
to the second level, which considers a multidirectional laminate in which the dominant length
scale is the ply thickness (100–300 μm). The mechanical properties of the laminate are
obtained by means of mesoscale simulations of the laminate based on the homogenized
properties of the plies and on the interply behavior. This information is used as input to
simulate the properties of the component made up of laminates by means of computational
mechanics simulations using shell elements for each laminate. The dominant length scale in
these simulations is the laminate thickness (>2 mm) and the homogenized properties of the
laminates are provided by the mesoscale simulations.

These multiscale strategies can accurately determine the strength of components
manufactured with composite materials and provide guidelines to optimize the design
including the effect of matrix and fiber properties as well as of fiber architecture. Moreover,
they lead to a significant reduction in the number of costly mechanical tests for certification
and qualification of new materials.

Current and future challenges. Further expansion of fiber-reinforced composites to other
industrial sectors and applications is limited by two factors. The first one is the high and
recurrent manufacturing cost and, hence, methods to reduce processing costs (while
mechanical properties are maintained) are mandatory. The second one is the limited
functional properties, as compared with metallic materials. The use of fiber-reinforced
composites in structural applications will be fostered if the thermal and electrical
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conductivity, fire resistance, etc, are equivalent to those of metals and new functionalities
(energy harvesting and storage) are incorporated [118].

The first challenge is being addressed through the development of virtual processing
tools. They are the perfect complement to the virtual testing tools presented above and can
avoid or reduce expensive trial campaigns enabling right-first-time concepts in manufacturing
(figure 11). Simulation of fiber-reinforced composites processing is a complex multiphysics
problem that involves fluid mechanics (infiltration of the resin into the porous fiber preform),
chemistry (resin curing), heat conduction and solid mechanics (fabric forming). Moreover,
these problems have to be solved at different length scales (resin infiltration at micro and
meso levels) and the current models and strategies available are still far from optimum [118].
There is a lack of robust computational methods for transferring information between the
different length scales (micro-to-macro) as well as of fast and efficient strategies for coupling
the different physical processes. Moreover, there is also a lack of reliable experimental
methods to quantify uncertainties in processing parameters, and to a larger extent, to track
uncontrolled manufacturing disturbances. The complexity of the simulation techniques
impose large demands in terms of computer time and prevent their direct application to

Figure 11. Schematic of the roadmap to carry out virtual processing and virtual testing
for structural composite materials. Virtual processing tools address fabric deformation
and preforming, resin impregnation and curing control. Virtual testing tools predict the
mechanical properties of the component using a bottom-up multiscale modeling
strategy that goes from the ply to the fabric up to the component.
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perform on-the-fly simulations during the manufacturing process. In this regard, surrogate
models and strategies based on proper generalized decomposition and dimensionality
reduction using principal component analysis become very relevant to speed-up manufactur-
ing simulations [119–121].

Current trends in manufacturing include the use of sensors to capture processing
disturbances. They generate huge amounts of data that can be used to trigger control and
corrective actions through the application of data analytics strategies based on experience and
knowledge obtained during years in factories. Thus, deep learning and artificial intelligence
algorithms can be used to solve the inverse problem to determine on-the-fly the actions to
minimize defects during processing [122, 123]. Then, virtual translation/copies of a
manufacturing process will become possible enabling the implementation of smart
manufacturing concepts. As a result, processing will be controlled by expert systems that
take decentralized and automated decisions leading to significant reductions in manufacturing
costs by decreasing rejection, inspection, and/or repairing issues.

Extension of the virtual testing techniques to include functional properties requires
coupling the different physical problems into a multiphysics framework. For instance,
inclusion of carbon nanotubes or grapheme sheets into the polymer matrix improves the
electrical conductivity. Typical electro-mechanical models use a network of standard resistive
element (following Ohm’s law) to account for the electron flow through the carbon fillers
while the network ends are connected by special elements simulating electron tunneling
between neighbor carbon nanotubes [124]. Such network can also be connected to mechanical
models to simulate the effect of carbon fillers on the mechanical polymer matrix, which in
turn modifies the properties of the composite [125].

Advances in science and technology to meet challenges. Despite the progress achieved in
recent years, substantial research is needed to expand the current simulation strategies and to
provide more efficient tools that can be used by industry. These efforts should be centered on
improvements in the multiscale and multiphysics approaches, as described below.

Extension of bottom-up multiscale methods becomes of primary importance when
physically-based models are being demanded. They include atomistic simulations based on
first-principles or molecular mechanics to determine the properties of the polymer matrix,
fibers and interfaces. This information, combined with robust and reliable methods for
mimicking real micro and meso-structures using statistical information obtained from 3D
imaging methods (x-ray microtomography), can be used within the framework of
computational homogenization to obtain the multifunctional properties of fiber-reinforced
composite plies.

Multiscale simulation of composites is based on the analytical or computational
homogenization of the behavior of a RVE of the microstructure and it is supported by the
clear separation of length scales between micro, meso and macro levels (see section 8). This
strategy is very efficient and accurate to determine average properties (elastic constants,
thermal conductivity, etc) but it is not so efficient to predict behaviors that are controlled by
the local details of the microstructure (fracture localization, electrical percolation). Thus,
extension of homogenization theories that can account for localization effects are
needed [126].

Multifunctional composites with high thermal and electrical conductivity are starting to
be used in multifunctional applications (such as protection against lightning impact in
aircrafts). The macroscopic simulation of these phenomena requires efficient multiphysics
codes that couple electrical and heat transport equations with plasma physics and mechanical
and acoustic interactions [127, 128] (figure 12). The integration of any computational tool
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into non-academic codes is necessary in order to consolidate and expand this knowledge to
design and predict the properties of multifunctional composites in industrial environments.

Concluding remarks. Multiscale modeling of the mechanical properties fiber-reinforced
composites in the last decade has led to the development of accurate virtual testing tools.
They were based on the clear separation of length scales—at the micro, meso and macro level
—and multiscale modeling was carried out by successive homogenization and transfer of
information between these length scales. Current challenges in the multiscale modeling of
multifunctional composites are focused in the extension of the strategies to simulate
processing and to account for multifunctional properties (thermal and electrical conductivity).
Both scenarios require the use of efficient and robust multiphysics modeling tools to couple
the different phenomena involved in the processing and the performance of multifunctional
composites. Last, but not least, transfer of these strategies and tools to industry is necessary to
support the expansion of composites in engineering applications.
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Figure 12. Schematic of a multiscale modeling framework to analyze the electrical
conductivity of multifunctional composites: (a) Carbon nanotube network embedded in
the polymeric matrix. (b) Unidirectional fiber reinforced composite ply. (c) Woven
fabric. (d) Laminate.
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13. Multiscale modeling of mechanical and dynamical metamaterials
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Status. Metamaterials are man-made materials, revealing remarkable effective properties
that are considered as unconventional or counter-intuitive, i.e. going beyond the properties of
their constituents. Whereas metamaterials have a long-standing history in, e.g. electro-
magnetics and optics, their impact in mechanics emerged more recently. In the field of
mechanical engineering, metamaterials are typically multi-scale architectured materials,
whereby the structure and geometry across the scales govern the unconventional effective
macro-scale engineering properties. They typically reveal (correlated) fine-scale fluctuation
fields, that govern the macroscopic response beyond their mean value. The field is growing
rapidly and has expanded its scope towards a wide range of static and dynamical properties.
Metamaterials exploited in a quasi-static or transient regime (not focusing on wave
propagation related properties) are here called mechanical metamaterials, whereas those
affecting mechanical wave propagation are termed dynamical metamaterials.

The field of mechanical metamaterials gradually evolved from simple (auxetic) counter-
intuitive mechanisms (30 years ago) to the considerably more complex mechanistic responses
achieved today. Recent examples show how to convert compression into twist [129], or how
to convert progressive instabilities into motion [130]. The modus operandi of these materials
is to switch between different microstructural states under the influence of internal constraints
or an externally applied load. Accordingly, the activation of these switching mechanisms can
be passive or active. The mechanisms are either built-in or induced by material or geometrical
instabilities in the microstructures [131, 132], leading to the formation of microstructural
patterns, see figure 13 for a simple example. The complexity pops up when such
microstructures pattern differently under the influence of internal frustration [134], different
external loads or boundary conditions. Integrating advanced actuation mechanisms to
externally control the desired mechanistic response, gives rise to a smart mechanical
metamaterial serving various future applications, e.g. for soft robotics.

The field of dynamical metamaterials focuses on the mitigation or manipulation of
mechanical waves in substructured solid or fluid-solid systems [135–138]. The modus
operandi is here twofold: Bragg scattering (i.e. phononic crystals) and local resonance (i.e.
locally resonant metamaterials). The first mechanism typically operates at length scales of
the same order as the size of the underlying periodic unit cells (meta-atoms), leading to the
formation of band gaps. The local resonance mechanism on the other hand, operates in the
deep-subwave length regime, interacting with microstructures that are much smaller than
the wave length of the excitation wave. It reveals sharp localized band gaps, driven by
negative (effective) mass and/or stiffness effects. Research in this field has given clear
directions towards applications in sound attenuation, high-resolution acoustic imaging,
transformation acoustics, cloaking, acoustic lenses, non-reciprocal transmission, vibration
control, instabilities-induced large-amplitude wave propagation in dissipative media,
mechanical analogs of topological insulators, etc [132, 138].

Current and future challenges. Even though the physical modi operandi of mechanical and
dynamical metamaterials are well understood, the design space—spanning microstructural to
engineering scales—is extremely wide, and various fine scale material properties influence

Modelling Simul. Mater. Sci. Eng. 28 (2020) 043001 Roadmap

42



the effective macro-scale response. The challenges reside both in the design, synthesis,
manufacturing, testing and modeling of these materials. Here, focus is given on the challenges
requiring advanced modeling approaches.

For mechanical metamaterials, the main research challenges are:

• Multi-stable patterning metamaterials: multi-stability, entailing non-convexity, should be
further explored for numerous microstructural configurations. This leads to the controlled
appearance of multiple complex mechanistic fine-scale patterns, enabling mode
conversion (e.g. from tension to torsion, from compression to shear, etc).

• Effective continuum models: for engineering applications, it is computationally
impossible to incorporate the microstructure in full-scale macro-scale computations.
Predictive engineering analyses can only be achieved through appropriate homogenized
constitutive models that take the effect of the microstructure into account. Scale
separation becomes non-trivial in most cases, with non-trivial boundary conditions,
affecting the emerging patterns.

• Actuation/activation: the fine scale exploitation of mechanical, electric, magnetic,
thermal, or chemical fields to actively switch between different patterned microstructural
states has to be scaled up to the effective emerging properties at the coarse scale.

• Load and power transmission: conventional smart materials are attractive in their
kinematical actions, but are very limited in terms of the power they can exert.
Metamaterials have the ability to deliver a relatively high output power, which makes
them challenging and rewarding.

• Nonlinear and time-dependent phenomena: nonlinearities have a pronounced influence
on the macro-scale response. Viscous damping and rate effects may strongly affect the
mechanistic patterns, which needs an in-depth modeling analysis.

For dynamical metamaterials, important research challenges are:

• Effective continuum models: homogenized effective models are needed to enable real
engineering applications, covering both Bragg scattering and local resonance [139].
Developing these in nonlinear regimes presents an even larger challenge.

Figure 13. A simple elastomeric mechanical metamaterial under vertical uniaxial
compression, with the instability induced pattern on the right. On the left, a highly
fluctuating vertical micro-scale deformation field component is shown in blue, on top
of which the (effective) macro-scale homogenized response (obtained by ensemble
averaging) is indicated in red. The constrained boundaries on the top and bottom,
inducing boundary layers and a size effect, are also visible. See [133] for more details.
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• Modeling approaches for non-periodic and dynamic metamaterials with distributed
heterogeneous resonators: to achieve wider frequency bands for attenuation or to exploit
the potential of local resonance phenomena in an aperiodic microstructure.

• Multi-scale design and optimization: multi-scale optimization and reversed engineering
(from macro to micro) offer great potential in identifying novel promising multi-material
designs.

• Nonlinear material effects: nonlinearity makes the microstructural response amplitude-
dependent and the overall response intrinsically size-dependent. Nonlinear aspects also
impact mode-conversion and wave-wave interactions.

• Geometrical nonlinearities and instabilities: topological microstructural changes induced
by large deformations or instabilities strongly alter the response of dynamical
metamaterials [132].

• Dissipation: material and viscous damping are known to affect dynamical metamaterials
to a large extent. The combination with thermo-viscous dissipation in entrapped fluids,
gives rise to metafoams, holding great potential. Non-Hermitian acoustics aims to either
dissipate or add energy to the system [136].

• Activation: locally deforming microstructures at the small scale in a controlled manner
enables reconfigurability, adaptivity and tunability of the effective behavior at the coarse
scale, e.g. magnetoactive acoustic metamaterials [140].

Advances in science and technology to meet challenges. To address the challenges sketched
above, a multi-scale approach is needed with expertise from different fields. Common to both
mechanical and dynamical metamaterials, the following required advances in modeling can
be identified:

• Multi-scale computational design and optimization: the microstructural degrees of
freedom in these metamaterials span both the 3D micro-scale geometry and the
integration of (different) materials. Dealing with nonlinearities, instabilities, dissipation,
actuation, requires a systematic modeling-driven approach. Targeting particular macro-
scale kinematics or dynamics necessitates a modeling and (topology and materials)
optimization approach [141] that links the scales towards the desired engineering
properties, ultimately leading to the reversed engineering of such metamaterials.

• Advanced homogenization approaches: the homogenization of metamaterials does not fit
in classical first-order homogenization schemes, since scale separation does not truly
apply anymore. First attempts to homogenize the response of these materials clearly
reveal the emergence of a so-called micromorphic continuum with additional physical
fine scale degrees of freedom. Moreover, the identification of proper boundary conditions
at the macro-scale still remains difficult and needs a dedicated multi-scale approach.

• Small scale defects and heterogeneities: mechanical metamaterials are generally modeled
in a strongly idealized setting. Processing induced defects, both in the materials and the
geometry, and spatial heterogeneities need to be integrated in multi-scale modeling
approaches.

• Actuation and activation: physical actuation mechanisms, their integration in the
microstructure, and the control thereof, leading to different micromorphical states and
accompanying macro-scale response, still require extensive research.

• Nonlinearities, anisotropy and time-dependence: the next generation mechanical/
dynamical metamaterials is expected to systematically exploit nonlinearities, anisotropy
and/or time-dependent effects. Nonlinear effects are hardly explored and may have a
strong influence to the benefit of the overall response.
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A major recent advancement in the field of mechanical and dynamical metamaterials
relates to their manufacturability. Indeed, the progress made in additive manufacturing
constitutes a real enabler for this class of materials, but it also requires extensive parallel
modeling to achieve real predictive models.

Concluding remarks. The field of this class of metamaterials is expanding tremendously.
The future of acoustic metamaterials looks sound [138], and mechanical metamaterials are
expected to make a break-through, among others, in soft robotics applications. Numerous
exciting effects have been demonstrated in the literature and the prospects are great. Yet, the
path towards their real engineering exploitation is long and difficult. Metamaterials are
intrinsically multi-scale in nature. The effective properties are due to the underlying physical,
geometrical and topological details at the fine scale. Advanced modeling is required at both
scales, and reliable predictive scale bridging methods are indispensable.

The market for mechanical or dynamical metamaterials is still in a premature state. In
order to enable the many envisioned applications, computational efforts will need to be
complemented by parallel progress in manufacturing (bulk processing and 3D additive
manufacturing), multi-scale experiments and model validation.

Acknowledgments

The research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/
ERC grant agreement no. [339392]. The fruitful collaboration and discussions with Ron
Peerlings and Varvara Kouznetsova on mechanical and dynamical metamaterials, respec-
tively, is greatly acknowledged.

Modelling Simul. Mater. Sci. Eng. 28 (2020) 043001 Roadmap

45



14. Multiscale modeling of steel, quantum towards continuum

Ann E Mattsson
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Status. In this section we will explore where we stand with regards to multiscale modeling
of any material by discussing the immensely important material of steel. A simplified, partial,
phase diagram of this iron/carbon alloy is shown in figure 14. We will focus on the task of
describing the process of cooling a piece of steel in the austenite phase (carbon dissolved in
γ-iron) to the room temperature steel phase. This is one of the most important processing
steps to form steels of varying properties.

The phase diagram in figure 14 contains two solid phases of iron, the body-centered
cubic (bcc, α, ferrite), and the face-centered cubic (fcc, γ, austenite). For simplicity, high
temperature solid phases and liquid will not be discussed here. Carbon exists in two phases,
atomistic when dissolved in fcc-iron, and combined with three iron per carbon in the Fe3C
compound (cementite). When γ-iron with carbon in solid solution is cooled from the austenite
phase, all carbon will seek to form Fe3C and the remaining Fe will form a bcc-lattice, that is,
α-iron. This is because α-iron cannot contain more than a maximum of around 0.1 atom%
carbon. Depending on cooling rates a wide variety of microstructures can form in this process.
Pearlite, a eutectoid (two-component) phase, at around 3.5 atom% carbon, with Fe3C and
α-iron forming a laminar structure, is the thermodynamically stable phase. Iron with higher
than 9 atom% carbon is called cast iron. In addition to carbon, a variety of low atom%
substitutional elements (replacing iron ions in the lattice), such as, manganese (Mn) and
chromium (Cr), are used to fine tune the properties of the steel.

For proper modeling of the subset of processes important for steel production described
above, we will need to investigate at least two things: (1) How the phase transition from fcc-
to bcc-iron works depending on substitutional elements, carbon content and cooling rate, and
(2) how substitutional elements affect the diffusion of interstitial carbon in fcc-iron.

Current and future challenges. When a grain of iron transforms from an fcc to a bcc lattice
structure on cooling, the atoms can rearrange in several different ways and the resulting bcc
lattice has a specific orientation vis-a-vis the original fcc lattice. Fast cooling follows the Bain
path and the Bain orientation relation (OR) between fcc- (blue/white) and bcc- (red) iron is
depicted top, right in figure 15. This fast cooling can trap carbon inside the octahedral space
in the fcc lattice, resulting in martensite, a distorted bcc-lattice with an occasional carbon in
one of the bonds (red). Slower cooling give preference to several other transformation paths
resulting in bcc phases with, among others, Pitsch, NW, and KS ORs, shown in figure 15.
Depending on cooling rate, a range of microstructures can be formed between martensite,
with bcc-iron in the Bain OR, and the above-mentioned pearlite phase which has bcc-iron
mostly in the KS OR [142]. An accurate description of these transition paths is crucial.

These transformation paths in pure iron can be examined using DFT [143, 144] based
methods ([145], see [146] for start and end points of such transformation paths), at least
within the accuracy of the exchange-correlation functionals available [147]. However, how
these paths change when substitutional elements are present is not possible to accurately
examine with DFT due to the low concentration of these elements (often less than 0.1%).
Similarly, diffusion of carbon in fcc-iron can possibly be done with DFT based methods, but
how the diffusion is influenced by substitutional elements cannot. The key problem is the
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unfeasibly large supercell that would be needed to accurately explore low atom%
substitutional elements in iron with DFT.

To examine the effects of substitutional elements on phase transition paths and carbon
diffusion, the determination of ion–ion interactions by explicit treatment of electrons within
DFT will need to be replaced by some computationally simpler methods, using DFT only to
verify the accuracy of these larger scale methods. Most common today is the use of parameter
fitted formulas to determine forces, so called interatomic potentials or force fields. Force fields
can be used both in classical MD and MC methods. However, we are only trading the large
supercell problem in DFT, for how to treat many different types of ions influencing each
other, and how to treat temperature and magnetism [148].

The simplest interatomic forces are pair potentials and we need one specific potential for
each type of pair. For iron/carbon, C–C, C–Fe, and Fe–Fe potentials are needed, and adding
one substitutional element, S1, adds S1–S1, S1–C, and S1–Fe pair potentials. The number of
pair potentials grows fast with the number of different elements present. In addition, in solid
state settings pair potentials are never sufficient, and more complicated force fields, taking
many- (more than two) body interactions into account, are needed. So far there are only
preliminary works on including temperature [149] and spin dependence [150] into
calculations using force fields.

Advances in science and technology to meet challenges. On the next scale up from MD and
MC methods, one common technique for investigating the microstructure of steel and other
materials is phase field (PF) modeling. In figure 16, a very simple, hypothetical, MD
investigation of a phase transition, of use as input for PF modeling, is depicted: What is the
velocity of the phase transition between fcc- and bcc-iron, as a function of carbon content,

Figure 14. Schematic Iron-Carbon phase diagram at atmospheric pressure. Blue lines
indicate phase boundaries and the red dotted lines are indicating the temperatures for
magnetic transitions, the upper one for bcc-iron and the lower one for Fe3C.
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substitutional elements, and cooling rate? With current methods [151] this question cannot be
accurately addressed and our inability to computationally answer questions relevant for PF
and other meso-scale methods has broken the multiscale chain. In order to be able to take this
next step we will need to be able to model at the atomistic level with improved or new
methods. A minimum effort would be to develop temperature dependent force fields that can
deal with magnetism.

The difficulty to accurately construct the plethora of force fields needed in a realistic
calculation also compels us to ask, is there a better way? The Hohenberg-Kohn theorem of
DFT [143] says that all information about the system is embedded in its electron density.
Considering Kohn’s near-sightedness principle [152] as well, maybe it is possible to construct
a fully local model for how ions are moving within a lattice. Such a model, only dependent on
electron density, would be independent of the exact type of neighboring atoms present,

Figure 15. Orientation relations between the original fcc (blue/white) and the final bcc
(red) lattice in the cooling phase transition of iron. Top left: Bain, Top right: Pitsch,
Bottom left: Nishiyama–Wassermann (NW), and bottom right: Kurdjumov–Sachs
(KS). Orange planes and cyan lines in the fcc lattice are parallel to green planes and
pink lines, respectively, in the bcc lattice.

Figure 16. What is the velocity of the phase transition between fcc- and bcc-iron, as a
function of carbon content, substitutional elements, and cooling rate? Temperature
dependent force fields able to deal with magnetism are needed for this investigation.
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eliminating the need for specialized force fields for every type of environment, and enabling
needed classical MD/MC simulations.

Concluding remarks. Even if we simplify the steel problem dramatically we still do not have
the methods available for making a full investigation from quantum to continuum with only
calculational input. For the foreseeable future we will need to continue doing smaller
modeling efforts based on interactions with experiments. This situation is not a prohibiting
issue for steel but for investigations of materials that are expensive, dangerous, and/or
impossible to synthesize in enough quantities to perform experiments on, it is urgent to
advance the science to the point where experiments are only needed for validation of the
results of our purely calculational multiscale methods.
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Status. Modern multiscale materials modeling increasingly requires (i) powerful simulation
engines that take advantage of modern, often heterogeneous, computing platforms,
(ii) distributed, collaborative efforts to develop and sustain these simulation tools, (iii) complex
workflows that integrate multiple models and data sources, including UQ, to tackle complex
problems. In addition, as this Roadmap article has illustrated, there is a growing need to integrate
tools from data science and ML to bridge between scales and to orchestrate simulations and
workflows in materials design efforts. The complexity of the resulting workflows and the need to
make these tools and the data they generate accessible and useful to the broad material
community calls for the use of modern cyberinfrastructure to tackle increasingly complex
multiscale challenges.

The US National Science Foundation is credited with having coined the term
cyberinfrastructure as the collection of high-performance computing resources, networks,
simulation software and data, connected experimental facilities and communication software
designed to accelerate progress in science and engineering [153]. Around the world,
significant investments in cyberinfrastructure, also called e-science [154], are being made
seeking to accelerate the advance of science and engineering as well as enhance education and
learning. The field of materials science and engineering is capitalizing from this digital
revolution as it seeks to synergistically combine experiments, multiscale modeling, and data
science to advance the discovery and optimization of new materials, understanding and
prediction of materials behavior, and their deployment into new technologies. To significantly
accelerate multiscale modeling of materials, new methods must leverage these collective
capabilities and capitalize on growing cyber-resources. Here I discuss the available resources,
opportunities, and the potential of cyberinfrastructure to transform materials modeling and
single and multiple scales.

Recent efforts in cyberinfrastructure build, in part, on advances in materials modeling
over many decades and the development of powerful community codes. For example, the
development of the local density approximations to the exchange and correlation functional
starting in the 1980s, followed by gradient corrections, provided a balance of accuracy and
computational efficiency that transformed DFT in the workhorse electronic structure method
for materials simulations. Today DFT powers some of the largest materials data repositories
in the world such as the Materials Project [155]. Similarly, the development of force fields
capable of describing a wide range of materials since the 1980s, see for example [156–161],
added MD to the toolset available to materials researchers. Similar progress can be cited at
mesoscales, with tools that are being adopted by the wider community [162, 163]. The impact
of these models has been significantly enhanced by widely available, powerful and generally
applicable codes that enabled researchers to use them as tools without the need to write
software from the ground up. Examples of tools widely used across scales in materials
modeling include Quantum Espresso [164], LAMMPS [7], ParaDIS [165], OOF2 [166], and
MOOSE [167].

Current and future challenges. More recently, significant efforts have been devoted to
making these tools and associated data universally available and useful. The US National
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Science Foundation’s nanoHUB has delivered online simulations since 2002 and currently
provides end-to-end services for tool developers to make their codes accessible via cloud
computing with powerful and easy to develop graphical user interfaces and access to high-
performance computing hardware. Users access these tools from a standard web-browser,
without the need to download or install any software. Automatic UQ is available for a wide
range of tools [168]. Researchers, educators and students can focus on their domain science
and not worry about the technical challenges associated with setting up simulations or
accessing leadership-class computing. In addition, incentivized greatly by efforts like the
Materials Genome Initiative [169] and the European Materials Modeling Council [170], the
current decade witnessed an explosive growth in the deployment of web-accessible data
repositories, registries and analysis tools. Prime examples of these resources include the
Materials Project [155], OpenKIM [9], NOMAD [171], AFLOW [172] and many others. This
growing cyberinfrastructure enables the use of data science tools to uncover patterns, identify
materials with desired properties, and discover new ones, see for example [173–175]. In the
field of multiscale materials modeling, these simulation and data resources contributed
significantly to reproducibility of published results and, more generally, shortened the time
required to set up simulations. For example, using openKIM, researchers can utilize published
interatomic potentials for MD simulations by simply linking openKIM models to supported
MD codes, as opposed to copying parameters from a paper into an input file or writing scripts
to create tables as used to be case until recently. Similarly, crystal structures from the
Materials Project, pseudopotentials from a library like Quantum Espresso’s PSLIBRARY,
and online simulation tools [176] make it easier to set up and perform DFT calculations. Last,
but certainly not least, AiiDA, a powerful infrastructure to develop, manage and share
computational workflows and data [5], is contributing to reproducibility, data reuse and
sharing, and insulating the researcher from the details of the underlying compute and storage
systems. The field of mesoscale modeling would benefit greatly from the development of such
an infrastructure of codes and data in areas like dislocation dynamics and PFs. The creation of
the Phase Field Community Hub [177] and online simulation tools [178, 179] are auspicious
initial steps. Challenges and opportunities in data management and utilization are not
restricted to computational efforts; experimental work has identical needs. Often, a
combination of experimental and computational data is needed to solve challenging
problems. Examples of repositories of experimental materials data include the Materials Data
Facility, developed by the Center for Hierarchical Materials Design (CHiMaD), currently
hosting over 35TB of data [180], the NIMS Materials Database from Japan [181], and the
Materials Data Repository from the US National Institute for Standards and
Technology [182].

Advances in science and technology to meet challenges. The growing availability of web-
accessible data and simulation tools could launch a new era in multiscale modeling, one
where researchers could create multiscale modeling workflows with distributed data and
codes. Simulation codes could automatically request input data from remote servers via web-
services. Smart caching of simulation results and surrogate models could be used to provide
results in a timely fashion and avoid duplicate calculations. While the technology to perform
these tasks exists today, and many cyber-resources are web-accessible [183], multiscale
modeling workflows still require time consuming human intervention. This is exemplified
graphically for the case of a nanoHUB simulation in the left panel of figure 17. To run and
store a DFT calculation, a user may find a set of crystal structures in the Materials Project and
pseudopotentials in the PSLIBRARY. She would have to download them to her desktop and
then upload them in, for example, the Quantum Espresso tool in nanoHUB. After running the
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simulations, she would likely use ad hoc scripts to extract the quantities of interest and then,
in the best-case scenario, upload the simulations in a repository such as NOMAD. A
multiscale modeling workflow will involve the use of multiple tools and would necessarily
become more complex and include a larger number of manual steps. A better solution would
be creating a cyber-ecosystem where different cyberinfrastructures and tools can connect to
each other without intervention of the user except in the selection of inputs and outputs. This
is exemplified on the right panel of figure 17. Here the researcher goes to nanoHUB and
interacts with a simulation tool capable of identifying possible data streams for inputs and
outputs, and directly connects to the various resources as needed. Such ecosystem would have
multiple entry points, for example, simulations could be launched automatically from a data
exploration tool.

Partially motivated by these needs, the nanoHUB team has included online support for
Jupyter notebooks that researchers can use to create, document and publish scientific
workflows, including multiscale simulations. These workflows can use web-services to
request input data, setup a series of simulations, performing the necessary analysis and
conversions between them and display the final results. The glass transition notebook in
nanoHUB is one such example [184]. Using the tool, researchers can: (i) select a monomer to
download from the ChemSpider database [185], (ii) build an amorphous polymer sample
using MC using the Polymer Modeler tool [186], (iii) perform a LAMMPS calculation where
the polymer is subject to a thermal cycle, and (iv) postprocess and plot the results to extract
the glass transition temperature. Another recent effort involved connecting simulation tools
with input data streams. The KimExplorer tool [187] and the Nanomaterials Mechanics
Explorer tool [188] query the OpenKIM repository [13] and present the researcher with
possible interatomic potentials for their system of interest. Once selected, these potentials are
automatically downloaded and installed to perform the simulations.

Concluding remarks. In summary, modern cyberinfrastructure has the potential to
fundamentally change how multiscale modeling of materials is practiced and accelerate
progress in the field. Modern cyberinfrastructure can simplify the connection between tools
across scales and with sources of data, enable publishing and sharing multiscale workflows,
and can put these tools in the hands of domain experts who may not have computational
expertize to access them otherwise. In addition, the ability to publish end-to-end workflows

Figure 17. Left panel: users often need to create workflows manually to connect current
resources. Right panel: inter-operable resources where tools are aware of input and
output data streams and are connected by web-services.
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reduces human error, contributes to reproducibility, and accelerates progress leading to more
reliable predictive simulations of materials behavior.
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