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Abstract
Empirical interatomic potentials are widely used in atomistic simulations 
due to their ability to compute the total energy and interatomic forces 
quickly relative to more accurate quantum calculations. The functional 
forms in these potentials are sometimes stored in a tabulated format, as a 
collection of data points (argument–value pairs), and a suitable interpolation 
(often spline-based) is used to obtain the function value at an arbitrary point. 
We explore the effect of these interpolations on the potential predictions by 
calculating the quasi-harmonic thermal expansion and !nite-temperature 
elastic constant of a one-dimensional chain compared with molecular 
dynamics simulations. Our results show that some predictions are affected 
by the choice of interpolation regardless of the number of tabulated data 
points. Our results clearly indicate that the interpolation must be considered 
part of the potential de!nition, especially for lattice dynamics properties that 
depend on higher-order derivatives of the potential. This is facilitated by the 
Knowledgebase of Interatomic Models (KIM) project, in which both the 
tabulated data (‘parameterized model’) and the code that interpolates them 
to compute energy and forces (‘model driver’) are stored and given unique 
citeable identi!ers. We have developed cubic and quintic spline model drivers 
for pair functional type models (EAM, FS, EMT) and uploaded them to the 
OpenKIM repository (https://openkim.org).
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1. Introduction

Empirical interatomic potentials (IPs) have long been used to model atomic bonding. Initially, 
IPs were used as part of theoretical studies of material behavior (such as the Lennard-Jones 
[1, 2] and Morse [3] potentials). Following the invention of the electronic computer in the 
1940s, Monte Carlo (MC) and molecular dynamics (MD) simulations became possible, and 
this led to a renewed interest in the development of IPs for a variety of metallic and covalent 
systems. This trend accelerated in the 1980s and, since then, a large number of different and 
increasingly complex IP descriptions have been developed (see [4] for more on the history 
and scienti!c development of IPs and MD). The reduced computational cost of IPs relative 
to more accurate quantum methods makes it possible to simulate larger systems for longer 
times, and thus to tackle problems that are inaccessible to quantum simulations, such as plastic 
deformation, fracture, atomic diffusion, and phase transformations [5].

Empirical IPs typically include functional forms with parameters that are obtained by  
!tting to a relevant training set of experimental and quantum data. In practice, the !tted func-
tional forms are often stored in a discretized tabulated format as a list of data points, and 
intermediate values are obtained by interpolation. For example, a pair potential function ϕ(r) 
would be stored as a set of values: (r1, ϕ1), (r2, ϕ2), …, (rn, ϕn), where ϕi  =  ϕ(ri) and n is the 
number of data points. In some cases, an analytic form for the function does not exist and the 
!tting procedure directly generates the potential in its discretized form with a small number 
(typically 10–30) of ϕi values used as the !tting parameters. This is the case, for example, for 
the force-matching scheme pioneered by Ercolessi and Adams [6].

IPs have been tabulated since the early days of molecular simulations and continue to be 
tabulated in popular MD codes. Interpolation of tabulated data using polynomials or splines 
is computationally more ef!cient than calculating the total energy and forces directly from 
the analytic functional forms, especially when the analytic functional forms are complicated. 
Moreover, the use of tabulated IPs makes the subroutines for calculating the total energy and 
forces general to a family of potentials, e.g. a single routine can be used for all pair poten-
tials. This facilitates the incorporation of user-de!ned IPs into existing codes because the 
task reduces to providing a table of numbers in a standard format. Initially, due to memory 
limitations, the number of data points n supported by these codes was limited (for example, 
in the original embedded atom method (EAM) potential, n was less than 10 [7]), but cur-
rently storing 10 000 data points per function is typical. For IPs based on an analytic form, 
the use of a large number of stored points provides a very smooth and accurate representation 
of the energy function. For IPs based directly on an interpolation through a small number of 
data points, the tabulation of additional points between the !tted values cannot improve the 
smoothness or accuracy of the energy function. However, in both cases, the large number of 
tabulated points minimizes differences between simulation codes that use different schemes 
to interpolate the data (e.g. cubic splines versus quintic splines).

Many popular IP forms are routinely tabulated, including pair potentials, EAM [8–10], 
Finnis–Sinclair (FS) [11], effective medium theory (EMT) [12], modi!ed EAM (MEAM) 
[13], and the angular-dependent potential (ADP) [14, 15], among others. There are two com-
mon approaches for tabulating IPs. The !rst (‘energy only’) tabulates only the energy values 
of the potential at selected points. Examples are the EAM potentials used in LAMMPS. If 
derivatives of the energy are needed, then they are computed as derivatives of the interpolated  
potential energy (e.g. a spline used to interpolate the energy is differentiated). The sec-
ond (‘energy and derivative(s)’) approach tabulates the values of the energy as well as its 
derivative(s). Then, energy derivatives (if needed) can be obtained by interpolating the tabu-
lated derivative data. Ercolessi and Adams store their glue potentials in this way [16]. The !rst 
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approach provides a self-consistent system (the derivative will match the numerical derivative 
of the energy), but may provide a very coarse description of the derivative function that has 
a low order of continuity. For example, the third-order derivative of a cubic spline is a piece-
wise constant function, and derivatives of order four and higher are identically zero. This can 
be problematic, especially when IPs of this type are !t using a small number of data points. 
The second approach can provide high-order continuous derivative functions, but they will 
be inconsistent in the sense that the derivative functions will not match the numerical deriva-
tives of the energy function. This inconsistency can result in problems such as energy drift in 
microcanonical ensemble (NVE) MD simulations [4].

Traditionally, tabulated IPs were delivered with MD codes. More recently, emphasis has 
been placed on archival storage of tabulated IPs in a standardized data format within the 
NIST Interatomic Potential Repository Project [17]. A more general, related effort is the 
Knowledgebase of Interatomic Models (KIM) project that archives arbitrary IPs and includes 
the development of a standard application programming interface (API) [18] for atomistic 
simulations [19–21]. The KIM API enables any KIM-compliant IP to work seamlessly with 
any KIM-compliant simulation code, including LAMMPS [22, 23], IMD [24, 25], DL_POLY 
[26, 27], and GULP [28, 29]. All items within the open online KIM system (the OpenKIM 
Repository, hosted at https://openkim.org) have unique citeable identi!ers that enable others 
to reproduce simulation results.

Users of tabulated IPs typically consider the data !le containing the discretized functional 
forms as the potential without considering the nature of the interpolation. The reasoning 
behind this is that if enough data points are used, then the type of interpolation will not affect 
the results. As alluded to, this argument is largely correct for MC and MD simulations that, 
for !nite temperatures, sample many of the interpolated data points and obtain a ‘smeared’ 
result that is effectively independent of the interpolation type. However, the nature of the 
interpolation can strongly affect methodologies that use higher-order derivatives of the IP 
without sampling, such as lattice dynamics calculations. For this reason, GULP (a leading 
lattice dynamics code) does not use tabulated potentials. This issue is also recognized within 
KIM, where both the tabulated data (‘parameterized model’) and the code that interpolates 
the tabulated data to compute energy and forces (‘model driver’) are stored in the OpenKIM 
Repository and together de!ne the IP. A recent example where a calculation can ‘go wrong’ 
due to interpolation effects is the application of the vibrational self-consistent !eld (VSCF) 
method [30] to the second-generation Brenner model [31]. VSCF requires derivatives of the IP 
up to fourth order; however, the Brenner potential incorporates a cubic spline with knots (data 
points) at graphene and diamond geometries. This leads to discontinuities in the (numerically 
computed) third- and fourth-order derivatives at the spline knots and, hence, to a breakdown 
of the VSCF approach [32].

The objective of this article was to systematically study the effect of tabulation and inter-
polation on the predictions of an IP. We chose the simplest possible case of a one-dimensional 
(1D) chain of copper atoms interacting via a nearest-neighbor modi!ed Morse potential [33]. 
We computed quasi-harmonic predictions for the thermal expansion and !nite-temperature 
elastic constants as well as MD predictions for these properties. Although simple, this example 
includes all of the features that are expected to play out in three-dimensional lattice dynamics 
calculations. We studied !ve types of splines: natural cubic, cubic Hermite, clamped quartic, 
clamped quintic, and quintic Hermite. As a cautionary tale, we also include a sixth, ‘naïve 
quartic’ spline generated using an algorithm that appears reasonable but leads to signi!cant 
errors. The predictions obtained from the spline computations were compared to the same 
computations performed with the analytic IP. The results show a strong effect of the interpo-
lation on the computed properties. Strictly speaking, only the clamped quintic spline is able 
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to reproduce all results obtained from the analytic IP. If the number of data points is on the 
order of n  =  500, then the quintic Hermite spline may also do a good job of reproducing the 
results. The observed strong interpolation effects motivated us to develop KIM model drivers 
for pair functional IPs (EAM, FS, EMT) for the quintic splines studied here, which have been 
uploaded to the OpenKIM Repository.

The article is organized as follows. In section 2, we brie#y describe the modi!ed Morse 
potential being used. In section  3, we discuss the basics of spline interpolation and the  
continuity and locality of splines, and apply the studied splines to the modi!ed Morse poten-
tial. In section 4, we present the 1D chain results. We end in section 5 with a summary and 
conclusions.

2. The empirical interatomic potential: modi"ed Morse potential

We consider 1D nearest-neighbor pair potential interactions where the total energy of a !nite 
chain1 of N atoms, with positions x1  <  x2  <  ···  <  xN, is given by

ϕ ϕ ϕ= − + − + ⋯ + − −V x x x x x x( ) ( ) ( ).N N2 1 3 2 1 (1)

The pair potential used in this article is a modi!ed Morse potential [33], given by

⎪
⎪⎧⎨
⎩

ϕ = −
− <

⩾

− − − −[ ]r
D

B
B r r

r r
( ) 2 1

e 2 e ,

0,
,

A B r r A r r B0 2 ( ) ( )/
cut

cut

0 0
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with parameters for copper given by r0  =  2.5471 Å, A  =  1.1857 Å−1, D0  =  0.5869 eV, 
B  =  2.265, and rcut  =  8.15 Å. As part of this work, the aforementioned IP has been imple-
mented and is now archived in OpenKIM [19, 34]. The standard Morse potential was modi!ed 
by MacDonald and MacDonald [33] to improve the agreement with experimental values for 
the thermal expansion of copper. This was done by adjusting ϕ″, which is largely responsible 
for the slope of the thermal expansion curve. Speci!cally, the parameter B is determined by 
!tting the thermal expansion to the experimental result near the Debye temperature. The stan-
dard Morse potential is recovered for B  =  1.

3. Spline interpolation of tabulated functions

3.1. Overview of spline interpolation

A variety of methods exist for interpolating between a discrete set of data points 
…x y x y( ˆ , ˆ ), , ( ˆ , ˆ )n n1 1 . In this section, we focus on spline interpolation, which is one of the meth-

ods of choice in MD codes. A spline is a function consisting of distinct polynomial segments 
de!ned over adjacent intervals that has a speci!ed level of continuity over its entire domain. 
The locality of a spline is related to how quickly a perturbation to a function value ŷi at data 
point x̂i decays away from it. In general, there is a tradeoff between locality and higher-order 
continuity [35].

Mathematically, a function S(x) on the interval [a, b] is a spline of degree k, if: (i) S is at 
most Ck−1 continuous on [a, b]; (ii) there are sub-intervals [xi−1, xi], i  =  1,  ···, n with a  =  x0  <  
x1  <  ···  <  xn  =  b on which S is polynomial of degree k; and (iii) there are points < ⩽−x x xˆi i i1  

1 For a periodic 1D chain with length L, the total energy is given by V  =  ϕ(x2  −  x1)  +  ϕ(x3  −  x2)  +···  +  ϕ(xN  −  xN−1)  +  
ϕ(L  +  x1  −  xN). 
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(the ‘knots’ of S) such that =S x y( ˆ ) ˆi i for i  =  1,  ···, n (see further, [36–39]). Thus, the spline is 
de!ned as

⎧
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where the Ncoef  =  n(k  +  1) coef!cients aij are obtained from the requirements that the spline: 
(i) interpolates the data at the knots (i.e. = )S x y( ˆ ) ˆi i ; (ii) satis!es certain continuity conditions 
at the sub-interval boundaries; and (iii) satis!es zero or more boundary conditions (BCs) at 
the ends. Note that splines of the same degree can have different continuity across sub-interval 
boundaries depending on the selected conditions as shown here.

Typically for odd-degree splines, the knots are taken to coincide with the sub-interval 
boundaries, =x xˆi i, i  =  0,  ···, n. For even degree splines, the knots are usually taken as the 
sub-interval mid-points. As an example, a natural cubic spline is a third-degree spline (k  =  3), 
which is of odd degree, so that the knots and sub-interval boundaries coincide, =x xˆi i, and we 
can drop the hat notation. A natural cubic spline satis!es the interpolation condition,

= = = …− −S x y S x y i n( ) , ( ) , 1, , ,i i i i i i1 1 (4)

!rst- and second-derivative continuity at internal sub-interval boundaries,

″ ″( ) = ( ) ( ) = ( ) = … −′ ′+ +S x S x S x S x i n, , 1, , 1,i i i i i i i i1 1 (5)

and zero second-derivative BCs at the ends,

″ ″( ) = ( ) =S x S x0, 0.n n1 0 (6)

These conditions yield a total of Neq  =  2n  +  2(n  −  1)  +  2  =  4n equations, which is equal 
to the number of coef!cients, Ncoef  =  n(k  +  1)  =  n (3  +  1)  =  4n. The spline coef!cients are 
obtained by solving the system of linear equations in (4)–(6). A natural cubic spline is weakly 
local because, although the perturbation of a data point affects all the coef!cients, in principle, 
this rapidly decays with distance from the data point.

Another type of cubic spline is the cubic Hermite spline, where second derivative continu-
ity is not enforced at sub-interval boundaries. Instead, the coef!cients of each segment are 
determined by the interpolation property in (4), and

( ) = ( ) = = …′ ′− −S x m S x m i n, , 1, , ,i i i i i i1 1 (7)

where mi is the numerical derivative estimate of the slope at xi. For example, using the 3-point 
central difference formula, the slopes at internal sub-interval boundaries (i  =  2,  ···, n  −  1) are 
mi  =  (yi+1  −  yi−1)/(xi+1  −  xi−1), and at the ends m0  =  (y1  −  y0)/(x1  −  x0) and mn  =  (yn  −  yn−1)/
(xn  −  xn−1). Because the coef!cients of each segment are determined separately from all oth-
ers, the cubic Hermite spline is strongly local.

A clamped cubic spline (not used in this work) is the same as the natural cubic spline except 
that the !rst derivatives are speci!ed as BCs. In particular, (4) and (5) together with the bound-
ary conditions =′S x m( )1 0 0 and =′S x m( )n n n de!ne the clamped cubic spline, where m0 and mn 
are the numerical derivative estimates of the slope at the left and right ends, respectively.

In a fashion similar to the cubic splines described, we de!ne the odd-degree clamped quin-
tic and quintic Hermite splines. Both are required to satisfy the interpolation property in (4). 
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The clamped quintic spline also satis!es C4 continuity at sub-interval boundaries. Four addi-
tional BCs must be speci!ed to close the system of equations. For the quintic Hermite spline, 
each segment’s coef!cients are determined from the values at the sub-interval boundaries and 
numerical derivative estimates for the !rst and second derivatives.

A direct extension of this discussion for odd-degree splines to the case of even-degree 
splines would impose the interpolation property in (4), Ck−1 continuity at the sub-internal 
boundaries, and k  −  1 BCs to close the system of equations. We call even-degree splines con-
structed in this way ‘naïve splines.’ As their name suggests, it is inadvisable to use splines of 
this type due to the ill-posedness of the resulting equations for the spline coef!cients2. Instead, 
even-degree splines should be constructed so that the knots are at the sub-interval mid-points 
[37], = +−x x xˆ ( )/2i i i1  for i  =  1,  ···, n. For example, the interpolation condition for a quartic 
spline becomes,

= = …S x y i n( ˆ ) ˆ , 1, , ,i i i (8)

and C3 continuity at the internal sub-interval boundaries requires,

= = … = … −+S x S x d i n( ) ( ), 0, , 3, 1, , 1.i
d

i i
d

i
( )

1
( ) (9)

Altogether there are Neq  =  n  +  4(n  −  1)  =  5n  −  4 equations, but Ncoef  =  n(k  +  1)  =  5n coef-
!cients need to be determined, which indicates four BCs should be speci!ed. The clamped 
quartic spline is de!ned in this way using numerical estimates of the !rst and second deriva-
tives at both ends (x0  =  a and xn  =  b) as BCs to close the system of equations.

Some of the splines described above are quite similar. As already mentioned, the natural cubic 
and clamped cubic splines only differ in BCs. Our computations show that they produce nearly 
identical results. Thus, we only present the natural cubic spline results here. We include results 
for a naïve quartic spline to illustrate the problems that can occur when naïve splines are used.  
A summary of the splines for which results are reported in this article is presented in table 1.

3.2. Computational cost of splines

IP implementations, such as the KIM-compliant EAM Dynamo driver [41], typically precom-
pute and store the coef!cients of each spline segment. The energy value and energy derivatives at 
a point are then computed easily using these coef!cients. For example, using Horner’s rule [42],

( ) = ( + ( + ( + ⋯ + ( + ) ⋯)−P x a x a x a x a xa ,m m0 1 2 1

for the evaluation of an mth-order polynomial at x, requires 2m #ops. Thus, in principle, 
quartic and quintic splines require 33% and 66% more execution time than a cubic spline, 
respectively. However, in practice, today’s general-purpose simulation codes (even the highly 
optimized ones) have enough additional overhead to make this performance difference largely 
inconsequential. To illustrate this point, we have timed MD simulations, using natural cubic 
and clamped quintic splines, that determine the equilibrium lattice constant at T  =  10 K. The 
times are 2403.87 s and 2505.88 s, respectively. Thus, the run time for a quintic spline calcula-
tion is only 4.24% longer than the cubic spline computation3.

2 Here we refer to the mathematical de!nition, due to J Hadamard [40], of well-posed problems that require solu-
tions to: (i) exist; (ii) be unique; and (iii) depend continuously on the problem data. In the case of the naïve even-
degree splines, it is condition (iii) that fails, resulting in an extreme sensitivity of the solution to small perturbations 
in the data x̂i and ŷi. See also the discussion of parabolic splines elsewhere [36]. 
3 The tests were conducted on a machine with 32 kB L1, 256 kB L2, and 8 MB L3 caches and 3 GB RAM. The 
code used was the MiniMol MD and MS package [4]. If a more general-purpose MD code (e.g. LAMMPS) were 
used, we expect an even smaller difference in the timing values, due to the additional complexity of such codes. 
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3.3. Spline interpolation of the modi!ed Morse potential

To explore the behavior of the splines listed in table  1, we applied them to the modi!ed 
Morse potential in (2). As discussed in section 1, IPs based on analytic functions are typically 
tabulated using one of two approaches (‘energy only’ or ‘energy and derivative(s)’). In this 
article, we adopt the !rst approach (‘energy only’). The energy function was interpolated over 
the range r  ∈  [0, 8.15] Å with equidistant knots at regular intervals. The derivatives of the IP 
were computed from the energy spline. The interpolation results are presented in !gure 1, 
where the spline labels are given in table 1 and ‘A’ (short for Analytic) indicates values that 
are computed directly from (2). The graphs only show the region close to the minimum of the 
function (r0  =  2.5471 Å) to highlight the differences.

Examining !gure 1, we see that all splines (except naïve quartic and quintic Hermite) 
yield very good interpolation results of the modi!ed Morse potential function and its deriva-
tives up to an order that is one degree lower than the degree of the spline. (The !rst derivative  
curves are not shown because, like the energy curves, all the splines do a good job of match-
ing the analytic function.) Although the second derivative of the cubic Hermite spline is 
discontinuous, this discontinuity is found to be negligibly small in comparison to its error 
in this case (see the inset of !gure 1(b)). Cubic splines have piecewise constant third deriva-
tives, as seen in !gure 1(c), because, for third-degree splines, ″( ) =′S x a6i i4, which is distinct 
for each segment (see (3)). A similar analysis applies to the fourth derivative of the quartic 
splines (because they are only C3 continuous) and the !fth derivative of the two quintic 
splines (not shown in the !gure). Note, in !gure 1(e) the blue naïve quartic (4*) curve is 
discontinuous and alternates between large and small values surrounding the analytic fourth 
derivative. The amplitude of the alternations is extremely sensitive to the values used for 
the BCs of the spline due to the ill-posedness of the naïve quartic spline formulation. This 
ill-posedness is also the cause of this spline’s third derivative oscillations about the ana-
lytic curve. Interestingly, the quintic Hermite spline shows, with increasing number of knots,  
a growing sensitivity to numerical noise in the derivative estimates used to compute its 
spline coef!cients. This can be seen by comparing !gure 1(d) (which uses 10 000 knots) and  
!gure 1(f) (which uses only 500 knots).

As a quantitative measure of the accuracy of the interpolations, we computed the normal-
ized root-mean-square deviations (NRMSD):

Table 1. Summary of splines used in this article. ‘Label’ refers to the labels used in 
!gures.

Spline Label Continuity Locality

BCs #Knots used 
to estimate 
derivativesLeft end Right end

Natural Cubic 3N C2 weakly local S″  =  0 S″  =  0 —
Cubic Hermite 3H C1 strongly local — — 5
Naïve Quartic 4* C3 nonlocal S′ S′, S‴ —
Clamped Quartic 4C C3 weakly local S′, S″ S′, S″ —
Clamped Quintic 5C C4 weakly local S′, S″ S′, S″ —
Quintic Hermite 5H C2 strongly local — — 7

Note: The BCs indicate the additional conditions speci!ed at the spline ends. When not zero, the imposed values are 
either estimated numerically or computed from the interpolated function. The number of knots used for derivative 
estimates is applicable to the internal knots (fewer knots are used near the ends).
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where f spline is the spline interpolation (which can be the function value, !rst derivative, etc) 
and f analytic is the corresponding analytic value obtained from (2) or its derivatives; 10 000 data 
points are used to do the interpolations over the range r  ∈  [0, 8.15] Å, but in (10), let a  =  2.54 
Å and b  =  2.56 Å, such that the range of r is consistent with that used in !gure 1. The results 
are listed in table 2. As expected, clamped quartic and clamped quintic splines have the small-
est NRMSD. Perhaps not surprisingly, given the discussion, the naïve quartic spline has larger 
NRMSD errors than the cubic splines.

3.4. Effect of noisy data on spline interpolation

In section 3.1, we discussed the locality of splines and listed our expectations for different 
splines in table 1. This can be an important consideration because the tabulated IP functions 
being interpolated are sometimes not smooth. To explore the effect of noise, we performed 

Figure 1. Spline interpolations of the modi!ed Morse potential for copper. The number 
of interpolation data points is n  =  10 000, except for frame (f) where n  =  500. (a) Energy 
values for all splines. (b) Second derivative for all splines. (c) Third derivative for all 
splines. (d) Fourth derivative for the clamped quartic and quintic splines. (e) Fourth 
derivative for the naïve quartic spline. (f) Fourth derivative for the clamped quartic and 
quintic splines with n  =  500 data points.
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the same interpolations as in section 3.3, but with ϕ9900 (the function value at knot 9 900 
located at r  =  8.0685 Å) perturbed to equal that of its left neighbor (i.e. ϕ9900  ≔  ϕ9899). The 
results are presented in !gure 2. The effect of the perturbation on the function value disap-
pears approximately !ve knot-spacings away from the noise site for all splines, except the 
naïve quartic spline for which the effect persists and even ampli!es as seen in !gure 2(b). 
The second derivative of the natural cubic spline, the third derivative of the clamped quartic 
spline, and the fourth derivative of the clamped quintic spline are presented in !gures 2(c)–
(e), respectively. We see that the perturbation decays to zero at approximately 50 knot-spac-
ings from the noise site in !gures 2(c)–(e). The range of effect for lower-order derivatives 
is much smaller. Locality is even stronger for the Hermite splines, in which the coef!cients 
in each segment depend only on the adjacent data points used to estimate the derivatives at 
the segment ends. For example, if a !ve-point central !nite difference is used to estimate 
the derivatives, then a segment 3 knots away from the noise site will not be affected by the 
perturbation. The NRMSD values for the noisy data are shown in table 2. These data con!rm 
that, except for the naïve quartic spline, all other splines studied in this work exhibit accept-
able behavior.

4. Effect of interpolation on model predictions

To explore the effect of interpolation on the predictions of tabulated IPs that are based on 
analytic functional forms, we consider the case of a periodic 1D chain of N copper atoms at 
!nite temperature. The atoms have nearest-neighbor interactions described by the modi!ed 
Morse potential described in section 2. We compute the thermal expansion and !nite-tem-
perature elastic constant of the chain using both the quasi-harmonic (QH) approximation 
and MD simulations. To maintain focus on real effects that can be expected from well-
posed spline interpolation, we delay the presentation of results for the ill-behaved naïve 
quartic spline to section  4.4, where we show just how badly such calculations can go 
wrong.

Table 2. Normalized root-mean-square deviation.

Spline ϕ ϕ ′ ϕ ″ ϕ ‴ ϕ (4)

Natural Cubic (3N) 3.3234  ×  10−14 7.8317  ×  10−9 3.9996  ×  10−7 8.6675  ×  10−4 —
Cubic Hermite (3H) 3.3235  ×  10−14 7.8319  ×  10−9 4.0007  ×  10−7 8.6679  ×  10−4 —
Clamped Quartic (4C) 1.7563  ×  10−16 1.5811  ×  10−11 3.1669  ×  10−10 3.8266  ×  10−7 8.7772  ×  10−4

Naïve Quartic (4*) 1.5246  ×  10−13 3.2462  ×  10−8 8.1550  ×  10−7 7.1508  ×  10−4 8.2501  ×  10−1

Clamped Quintic (5C) 1.7529  ×  10−16 1.5620  ×  10−11 2.5686  ×  10−10 1.7432  ×  10−7 1.5048  ×  10−4

Quintic Hermite (5H) 7.2104  ×  10−16 1.9921  ×  10−11 5.2351  ×  10−9 3.8273  ×  10−6 2.5560  ×  10−3

Natural Cubic (3N)a 3.3234  × 10−14 7.8317  × 10−9 3.9996  × 10−7 8.6675  × 10−4 —
Cubic Hermite (3H)a 3.3235  × 10−14 7.8319  × 10−9 4.0007  × 10−7 8.6679  × 10−4 —
Clamped Quartic (4C)a 1.7563  × 10−16 1.5811  × 10−11 3.1669  × 10−10 3.8266  × 10−7 8.7772  × 10−4

Naïve Quartic (4*)a 4.7503  × 10−6 10.114 25.408 2.2280  × 104 2.5705  × 107

Clamped Quintic (5C)a 1.7529  × 10−16 1.5620  × 10−11 2.5686  × 10−10 1.7432  × 10−7 1.5048  × 10−4

Quintic Hermite (5H)a 7.2104  × 10−16 1.9921  × 10−11 5.2351  × 10−9 3.8273  × 10−6 2.5560  × 10−3

a Denotes interpolation for noisy data (see section 3.4).
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4.1. Thermal expansion

The QH approximation for the thermomechanical properties of a 1D chain is described in 
Chapter 11 of another work [4]. For atoms interacting via a pair potential, the temperature 
dependence of the equilibrium lattice constant is obtained by solving4,

″ϕ ϕ
ϕ

+ ‴ =′ a
k T a

a
( )

2
( )
( )

0,B
 (11)

where a is the lattice constant at temperature T, and kB is Boltzmann’s constant. The result-
ing lattice constant versus temperature plots for the tabulated modi!ed Morse potential with 
different interpolations and number of knots are presented in !gure  3. As shown, the lat-
tice constants computed from the clamped quartic and quintic spline potentials coincide well 
with those obtained using the analytic potential. However, the cubic splines show signi!cant 
anomalies. Due to their discontinuous third-order derivatives, the T(a) relationship de!ned 

Figure 2. Interpolation of noisy data to test the locality of the splines. The number of 
interpolation data points is n  =  10 000. (a) Function values for all splines in the vicinity 
of noise site. (b) Function value for the naïve quartic spline far from the location of 
the noise. (c) Second derivative of the natural cubic spline. (d) Third derivative of the 
clamped quartic spline. (e) Fourth derivative of the clamped quintic spline.

(a) (b) (c)

(d) (e)

4 In practice, we solve (11) for T to obtain T  =  −2ϕ′(a)ϕ″(a)/[kBϕ‴(a)]. Then, we use this expression to compute 
(a, T) pairs over the range a  ∈  [2.5471, 2.7450] Å. These pairs are plotted in !gure 3 to obtain the lattice constant 
versus temperature relationship. 
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by (11) is also discontinuous. This results in signi!cant ranges of temperature over which the 
QH equilibrium lattice constant is not de!ned for the cubic splines. It is also interesting to 
note that for high temperatures where a QH equilibrium lattice constant is de!ned, we see a 
non-physical trend where the lattice constant rapidly decreases with increasing temperature. 
As can be seen in !gure 3, these anomalies exist regardless of the number of knots used in the 
cubic spline.

Figure 3(c) also shows the results from MD simulations. To obtain these results, a series 
of !nite chain (N  =  1000) constant temperature simulations were performed to obtain the 
equilibrium lattice constant at different temperatures. Using a !nite chain ensures that the 
average force (stress) in the chain is zero. Temperature was maintained using a Langevin ther-
mostat with damping coef!cient of 0.05 ps−1. The equations of motion were integrated using 
a velocity-Verlet algorithm with a time step of Δt  =  1 fs. To compute the lattice constant at a 
given temperature, the chain was evolved for 107 MD steps and the equilibrium chain length 
was computed as Leq  =  〈rN  −  r1〉 (where 〈·〉 indicates a time average). The equilibrium lattice 
constant follows as a  =  Leq/(N  −  1). The temperature was then incremented by ΔT  =  10 K,  
and the calculation was repeated at the new temperature. For each calculation, the initial atom 
spacing was taken equal to the equilibrium lattice constant at the previous temperature to 
minimize stress waves in the chain.

The MD results for the analytic potential and the various spline potentials, shown in !g-
ure 3(c), are in excellent agreement with the analytic QH calculations.5 This is not surprising 
because we saw in !gure  1 that all well-behaved splines accurately represent the analytic 
results up to derivatives of second order, and higher-order derivatives (although non-smooth 
and/or discontinuous in some cases) provide a reasonably accurate representation of the cor-
responding analytic curves. The time averaged nature of equilibrium material properties 
computed via MD simulations provides a ‘smeared’ result that effectively smooths out the 
splines’ higher-order derivatives. This is true as long as the temperature of the MD simulation 
is large enough so that more than just a couple of spline segments are sampled. We therefore 
do not expect to see differences due to interpolation in standard MD simulations as long as  

Figure 3. Equilibrium lattice constant as a function of temperature computed using the 
QH approximation with a tabulated modi!ed Morse potential using different splines 
with (a) n  =  500 knots, (b) n  =  2000 knots, and (c) n  =  10 000 knots. In addition to 
the lattice dynamics QH approximation results, frame (c) also shows the MD results 
computed using the analytic and spline potentials.

(a) (b) (c)

5 The MD data end at T  =  490 K, just before the 1D chain starts to ‘melt’ (corresponding to individual atoms sepa-
rating from the bulk of the chain). 
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the splines used have a suf!cient number of knots to accurately represent, on average, how the 
energy and its derivative change with atomic separation. See section 4.3 for a discussion of 
what happens when MD simulations sample only one spline segment.

4.2. Finite-temperature elastic constants

The QH approximation for the temperature-dependent stress-free spatial elastic constant (tan-
gent modulus) of a 1D chain of atoms interacting via a nearest-neighbor pair potential is [4],

⎡
⎣⎢

⎤
⎦⎥″ ″

″ϕ ϕ ϕ ϕ
ϕ

= + − ‴
c a a

k T a a a
a

( )
2

( ) ( ) ( ( ))
( ( ))

,B
(4) 2

2 (12)

where a  =  a(T) is the stress-free equilibrium lattice constant at temperature T. The value of 
c as a function of temperature for the spline and analytic potentials is presented in !gure 4. 
We see that the results obtained for the clamped quintic spline potential agree well with the 
analytic potential results, even when the number of knots is on the order of n  =  500. The 
results obtained using the quintic Hermite spline potential agree with the analytic results when 
the number of data points is not too large (e.g. n  =  500 and n  =  2000). However, due to the 
increased sensitivity to numerical noise from the use of numerical differentiation, the results 
of the quintic Hermite spline degrade somewhat when n  =  10 000 data points are used. This is 
in agreement with !gures 1(d) and (f), where the quintic Hermite spline predicts worse fourth-
order derivative values with more data points. Thus, at least for the quintic Hermite spline, 
increasing the number of knots does not necessarily lead to better accuracy. The results for the 
clamped quartic spline are interesting. Although this spline is only C3 continuous, it is able to 
follow the analytic curve, on average, and shows better results with more data points.

Unlike the higher-order quartic and quintic splines, the cubic splines (natural and 
Hermite) produce a quantitatively different behavior for the temperature-dependent elastic 
constant. In fact, they predict entirely the wrong initial slope at T  =  0. Increasing the number 

Figure 4. Stress-free spatial elastic constant (tangent modulus) as a function of 
temperature computed using the QH approximation with a tabulated modi!ed Morse 
potential using different splines with (a) n  =  500 knots, (b) n  =  2000 knots, and 
(c) n  =  10 000 knots. In addition to the lattice dynamics QH approximation results, 
frame (a) also shows the QH and MD results computed using pure cubic and quintic 
polynomial potentials, and frame (c) also shows the MD results computed using the 
analytic and spline potentials.

(a) (b) (c)
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of knots decreases the discontinuity in the cubic spline results and the curve appears to 
become smoother (by reducing the error in the piecewise constant third derivative), but this 
cannot resolve the basic error because the elastic constant depends on the fourth derivative 
of ϕ, which is identically zero for cubic splines. Further, it is worth noting that at high tem-
peratures the spline potentials give qualitatively incorrect results corresponding to a negative 
elastic constant.

The QH results for the stress-free elastic constant are compared with MD simulation 
results in !gure  4(c) (the MD results in !gure  4(a) are a special case that is discussed 
later). There are two common approaches to computing elastic constants in MD. The direct 
method in which the elastic constants are obtained from a stress-strain curve, and the stress 
or strain #uctuation method where they are obtained as a suitable ensemble average over the 
vibrating atoms [43–45]. We use the stress #uctuation method, which is performed under 
constant length L and constant temperature conditions. For the 1D case, the spatial elastic 
constant is [4]

⎡
⎣⎢

⎤
⎦⎥σ σ= + ⟨ ⟩ −c

L
Nk T L c

L
k T

1
2 Cov( , ) ,B

0
2

B

V,inst V,inst (13)

where L is the length of the chain and Cov is the covariance operator. In (13), c0 is the Born 
term given by

∑ ∑ ″ϕ ϕ= − ′
= = +

c
L

r r r r
1

[ ( )( ) ( ) ],
i

N

j i

N

ij ij ij ij
0

1 1

2 (14)

and rij  =  xj  −  xi. In (13), σV,inst is the potential part of the instantaneous stress,

∑ ∑σ ϕ= ′
= = +L

r r
1

( ) .
i

N

j i

N

ij ij
V,inst

1 1
 (15)

Equations (14) and (15) are written for the case of a !nite chain of atoms. The expressions 
for a periodic chain are similar. The MD results are plotted in !gure 4(c) and are seen to be in 
close agreement with the QH prediction using the analytic potential. As expected (see expla-
nation in section 4.1), the MD results for all splines and knot numbers were in close agree-
ment. Note that this includes the MD results obtained from the cubic splines, which do not 
agree with their QH counterparts.

4.3. Fitted spline interatomic potentials

So far, we have been concerned with IPs whose tabulated data are generated directly from an 
analytic functional form with parameters that have been !tted to reproduce various material 
properties. However, as mentioned in section 1, in some cases (which are becoming more 
common) an analytic form does not exist and the !tting procedure directly generates the tabu-
lated data. In such cases, the number of data points is small6, typically 10–30. This leads to a 
situation where, at least for low temperatures and in the worst-case scenario, only one spline 
segment is involved in a QH or MD computation.

6 Fitting with more spline knots is dif!cult due to a lack of experimental and !rst principles data representative of a 
full range of interatomic spacings, and because over-!tting can occur [46, 47]. 
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To illustrate what can happen in this situation, a pure cubic polynomial IP (3P) and a 
pure quintic polynomial IP (5P), shown in !gure 5, were de!ned such that the pure cubic 
IP reproduces the modi!ed Morse potential energy and its !rst and second derivatives at 
the pair equilibrium distance r0 and the pure quintic IP (5P) reproduces the modi!ed Morse 
potential energy and its !rst through third derivatives at r0. These IPs were used to compute 
the QH and MD elastic constant and the results are presented in !gure 4(a). Here, we see 
that the MD results always match the corresponding QH results (at least for low tempera-
tures). This shows that when an IP is based on a spline interpolation and a small number 
of knots is used for !tting the IP, the results (MD as well as QH) obtained from such an 
IP cannot be expected to match those of an analytic IP to which it was !t. Thus, caution is 
warranted when creating a spline-based IP by directly !tting the spline data7.

4.4. Results for the naïve quartic spine

We now return to the results for the naïve quartic spline. The temperature-dependent lattice 
constant and stress-free elastic constant curves, along with the corresponding analytic curves, 
are shown in !gures 6(a)–(f), respectively.

The lattice constant curve computed using the naïve quartic spline potential shows rea-
sonable agreement with that obtained from the analytic potential when the number of knots 
is 500 or 2000. However, when 10 000 knots are used, the spline results show anomalous 
behavior. In particular, there are temperature ranges over which there exist two equilibrium 
lattice constant values (see inset of !gure 6(c)), which is non-physical and qualitatively dif-
ferent from results for the analytic potential. Finally, we see that the naïve quartic spline IP 
produces complete nonsense for the stress-free elastic constant, shown in !gures 6(d)–(f). 
Note that in each frame there is just one curve for the naïve quartic that rapidly oscillates 
about the analytic curve.

Figure 5. Pure cubic polynomial and quintic polynomial potentials !t to reproduce the 
Morse potential energy and its derivatives at the minimum r0.

7 Note that re!ning such an IP by generating more knots from the original !tted spline will not improve its quality. 
We created cubic and quintic splines using 2000 data points from the pure cubic and pure quintic IPs. The QH and 
MD elastic constant values computed using these many-knotted spline IPs are the same as those obtained for the 
pure cubic and pure quintic IPs, respectively.
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5. Summary and conclusions

Interatomic potentials (IPs) that are used with MD codes are often tabulated and interpolated 
using polynomials or splines for reasons of ef!ciency and interoperability. In this article, we 
explored the effect this has on IPs and their predictions. First, we studied the ability of a vari-
ety of cubic, quartic, and quintic splines with different numbers of data points to reproduce a 
modi!ed Morse potential for copper and its derivatives. An important issue is the ‘locality’ of 
the interpolation, which is related to how quickly the effect of noisy data decays. Based on our 
investigations, we can make the following general recommendations:

 (a) Natural cubic, clamped quartic, and clamped quintic splines are able to reproduce the 
modi!ed Morse potential and its derivatives up to an order of one degree lower than that 
of the spline. These splines exhibit an acceptable level of locality.

 (b) Hermite splines by construction have strong locality. However, this comes at a cost of 
reduced continuity. In particular, the cubic and quintic Hermite splines have relatively poor 
second and fourth derivatives, respectively, and should be avoided when these are required.

 (c) Even degree splines should not be formulated using the ‘naïve approach,’ which leads 
to low-quality interpolation and extreme sensitivity to changes in the data. Instead, the 
well-posed formulation, presented in section 3.1, should be used.

We also explored the effect of the spline interpolation on various properties of a 1D chain 
of copper atoms interacting via nearest-neighbor pairwise interactions, including thermal 

Figure 6. Temperature-dependent lattice constant (a)–(c) and stress-free elastic 
constant (d)–(f), computed using the QH approximation and the naïve quartic spline 
with n  =  500, n  =  2000, and n  =  10 000 data points.

(a) (b) (c)

(d) (e) (f)
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expansion, and the stress-free spatial elastic constant at !nite temperature. The properties 
were computed using both QH approximation expressions and MD simulations. We found 
that the MD results are insensitive to the interpolation used. This is not surprising because MD 
sampling smooths out the higher-order derivatives of the splines and all of the studied splines 
provide good average estimates for the pair potential energy and its derivatives. This conclu-
sion is correct as long as an MD simulation samples an interpolated IP over multiple knots  
carrying distinct information. This can fail for IPs that are constructed by directly !tting the 
knot values of a coarse spline, even if a re!ned spline is constructed by adding knots between 
those of the original source spline through interpolation. In particular, if the MD sampling is 
limited to a single interval of the original source spline, then pathologies similar to those expe-
rienced by QH (summarized later) can also happen in MD as shown in section 4.3.

QH computations, which do not use sampling, show strong dependence on the interpola-
tion method and number of knots. In particular, cubic splines cannot be used to compute the 
QH estimate for the !nite-temperature elastic constant, which depends on the fourth deriva-
tive of the potential. As expected from our recommendations, the naïve quartic spline behaves 
quite poorly. The results for the elastic constant show that the accuracy obtained with the naïve 
quartic spline is signi!cantly reduced with increasing knot numbers.

The sensitivity of QH expressions to interpolation is representative of a class of computa-
tional methods that make use of higher-order derivatives. These include: (i) lattice dynamics  
methods for computing vibrational spectra of crystals, phase transformations, and so on [48]; 
(ii) multi-scale methods that include phonon stability analysis [49, 50] or harmonic free energy 
expressions [51, 52]; and (iii) branch-following and bifurcation methods that require smooth 
second derivatives [53–55]. In all of these cases, either the analytic potential or an interpola-
tion of suf!cient order to ensure the required level of continuity must be used.

This discussion suggests that the interpolation used with a tabulated IP must be considered 
part of the potential de!nition. This is the philosophy adopted by the KIM project (https://
openkim.org), which is an online resource for archiving and testing IPs [19, 20]. In KIM, a 
tabulated IP (i.e. a data !le in standard format containing the functions de!ning the IP as a 
table of argument–value pairs) is called a ‘parameterized model’. The computer routine that 
interpolates the tabulated data and computes the energy and forces for a collection of atoms is 
called a ‘model driver’. Both of these together de!ne the IP. Models and model drivers in KIM 
have unique identi!ers that can be cited in publications to facilitate research reproducibility.  
As part of the KIM project, an application programming interface called the ‘KIM API’ [18] has 
been developed in consultation with the atomistic simulation community. The KIM API makes 
it possible to use KIM models with KIM-compliant simulation codes, such as LAMMPS, IMD, 
DL_POLY, and GULP.

Finally, given the importance of interpolation effects, and the requirement for higher-order 
splines for many lattice dynamics and related computations, we have developed two new quintic 
spline model drivers (clamped and Hermite) for pair functional potentials (EAM, FS, EMT), 
which have been uploaded to KIM [56, 57]. These model drivers use the original EAM DYNAMO 
parameter !le format [58] and can be used seamlessly with any of the codes mentioned. For 
example, they can be used to replace the built-in cubic Hermite spline interpolation in LAMMPS.
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