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Abstract
Fitted interatomic potentials are widely used in atomistic simulations thanks to
their ability to compute the energy and forces on atoms quickly. However, the
simulation results crucially depend on the quality of the potential being used.
Force matching is a method aimed at constructing reliable and transferable
interatomic potentials by matching the forces computed by the potential as
closely as possible, with those obtained from first principles calculations. The
potfitprogram is an implementation of the force-matching method that opti-
mizes the potential parameters using a global minimization algorithm followed
by a local minimization polish. We extended potfitin two ways. First, we
adapted the code to be compliant with the KIM Application Programming
Interface (API) standard (part of the Knowledgebase of Interatomic Models
project). This makes it possible to use potfitto fit many KIM potential models,
not just those prebuilt into the potfitcode. Second, we incorporated the geo-
desic Levenberg–Marquardt (LM) minimization algorithm into potfitas a new
local minimization algorithm. The extended potfitwas tested by generating a
training set using the KIM environment-dependent interatomic potential
(EDIP) model for silicon and using potfitto recover the potential parameters
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from different initial guesses. The results show that EDIP is a ‘sloppy model’
in the sense that its predictions are insensitive to some of its parameters, which
makes fitting more difficult. We find that the geodesic LM algorithm is par-
ticularly efficient for this case. The extended potfitcode is the first step in
developing a KIM-based fitting framework for interatomic potentials for bulk
and two-dimensional materials. The code is available for download via
https://www.potfit.net.

S Online supplementary data available from stacks.iop.org/msms/25/
014001/mmedia

Keywords: interatomic potentials, Knowledgebase of Interatomic Models,
sloppy models, geodesic Levenberg–Marquardt minimization, force-matching
fitting, potfit

(Some figures may appear in colour only in the online journal)

1. Introduction

An interatomic potential (IP) is a model for approximating the quantum-mechanical inter-
action of electrons and nuclei in a material through a parameterized functional form that
depends only on the positions of the nuclei. IPs such as the Lennard–Jones [1, 2] and Morse
[3] potentials were initially introduced as part of theoretical studies of material behavior in the
early 20th century. Interest in IPs renewed in the 1960s following the development of Monte
Carlo and molecular dynamics (MD) simulation methods. This led to the development of IPs
for a variety of material systems, a trend that accelerated in the 1980s with the formulation of
a large number of increasingly complex IPs. (See [4] for more on the history and scientific
development of IPs and MD.) Even complex IPs are far less costly to compute than a first
principles approach that involves solving the Schrödinger equation for the quantum system.
This enables simulations of large systems (millions, billions and even trillions of atoms
depending on the IP) for very short times or moderate-size systems for longer times (tens or
hundreds of nanoseconds). Such simulations can tackle problems that are inaccessible to
quantum calculations, such as plastic deformation, fracture, atomic diffusion, and phase
transformations [5].

Obtaining an accurate and reliable IP constitutes a challenging problem that involves
choosing an appropriate functional form and adjusting the parameters to optimally reproduce
a relevant training set of experimental and/or quantum data. Traditionally IPs were fitted to
reproduce a set of material properties considered important for a given application, such as the
cohesive energy, equilibrium lattice constant, and elastic constants of a given crystal phase.
However experience has shown that the transferability of such IPs (i.e. their ability to
accurately predict behavior that they were not fitted to reproduce) can be limited due to the
small number of atomic configurations sampled in the training set (although recent work [6]
has shown that this approach can be effective in some cases). Further, as the complexity of
IPs increases (both in terms of the functional forms and the number of parameters) it can be
difficult to obtain a sufficient number of material properties for the training set. This is
particularly true for multispecies systems like intermetallic alloys.

To address these difficulties, Ercolessi and Adams [7] proposed the force-matching
method in which a training set containing material properties is augmented with the forces on
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atoms obtained by first principles calculations for a set of atomic configurations. These can be
configurations associated with important structures or simply random snapshots of the crystal
as the atoms oscillate at finite temperature. By fitting to this information the transferability of
the potential is likely enhanced since it is exposed to a larger cross-section of configuration
space. The issue of insufficient training data is also resolved since as many configurations as
needed can be easily generated. This makes it possible to increase the number of parameters
and in fact in the original Ercolessi–Adams potential for aluminum [7] the functional forms
were taken to be cubic splines with the spline knots serving as parameters. This gives
maximum freedom to the fitting process (at the expense of a clear physical motivation for the
functional form). The force-matching method has been widely used since its introduction and
there are a number of open source implementations available. The ForceFit [8] and For-
ceBalance [9] packages target organic-chemistry applications, while potfit[10–12] focuses on
solid-state physics.

IP fitting programs (such as those mentioned above) define a ‘cost function’ quantifying
the difference between the training set data and IP predictions and use global and/or local
minimization algorithms to reduce the cost as much as possible. For example, the potfit
program uses simulated annealing for global minimization followed by a local polish using a
conjugate gradient (CG) method. A difficulty associated with this procedure is that IPs are
nonlinear functions that are often ‘sloppy’ in the sense that their predictions are insensitive to
certain combinations of their parameters [13]. These soft modes in parameter space can cause
the minimization algorithms to fail to converge. Recently an understanding of sloppy models
based on ideas from differential geometry has led to efficient methods for fitting such models
[14]. The basic idea is that the parameters of a model (like an IP) define a manifold in the
space of data predictions. Fitting the IP then corresponds to finding the point on the manifold
closest to the training set. Using these ideas Transtrum et al [14] augmented the Levenberg–
Marquardt (LM) algorithm with a geodesic acceleration adjustment to improve convergence.
The new geodesic LM algorithm is likely to be more efficient and more likely to converge for
sloppy model systems than conventional approaches. Geodesic LM has been applied to a
variety of applications in physics and biology, but until now not to the IP fitting problem.

Once an IP is developed it must be integrated into an MD code (or other atomic-scale
simulation package). Traditionally this was done on a code-by-code basis. This creates a
barrier for the universal usability of IPs. Users are typically limited by the IPs that happen to
be available in the package that they choose. The same applies to IP fitting programs, which
support a limited set of functional forms that they can fit. Extending codes to support new IPs
is a time consuming and error-prone process. It also leads to an inevitable uncontrolled
mutation of IPs as modifications to functional forms and/or parameters are introduced (often
without adequate documentation). More recently, emphases have been placed on archival
storage of IPs within projects such as the NIST Interatomic Potential Repository (IPR) [15]
and the Open Knowledgebase of Interatomic Models (KIM) project [16–18]. The NIST IPR
stores tabulated parameters for a limited number of functional forms (mostly the embedded-
atom method (EAM) [19–21]). OpenKIM hosted at https://openkim.org is a more general
effort in which the IP implementation itself is stored in a format that conforms to an appli-
cation programming interface (API) standard developed as part of the KIM project [22]. The
KIM API enables any IP stored in KIM to work seamlessly with any KIM-compliant
simulation code including ASAP [23], DL_POLY [24, 25], GULP [26, 27], IMD [28–30],
LAMMPS [31, 32], libAtoms+QUIP [33] and Quasicontinuum [34]. In addition IPs stored in
OpenKIM are exhaustively tested by computing their prediction for a large number of mat-
erial properties. These calculations are performed by ‘KIM Tests’ also archived in OpenKIM.

Modelling Simul. Mater. Sci. Eng. 25 (2017) 014001 M Wen et al

3

https://openkim.org


Users can extend the OpenKIM system by uploading their own tests. The predictions of the
IPs can be explored using text-based searches and a user-extendible visualization system [35].

In this paper we describe a KIM-compliant implementation of the potfitprogram
designed for fitting sloppy IPs. The work has two main objectives. First, we extend the
potfitprogram to support the KIM API making it possible to fit IPs with arbitrary functional
forms that are portable to a large number of KIM-compliant simulation codes. Second, we
explore the efficiency of the geodesic LM algorithm for fitting IPs using the force-matching
method within the potfitframework. We test the new implementation on a KIM-compliant
implementation of the environment-dependent interatomic potential (EDIP) for silicon [36–
38]. We use the EDIP model to generate a training set of force configurations and explore the
ability of potfitto converge back to the original EDIP parameters from different initial
guesses. We find that EDIP has the properties of a sloppy model and that the geodesic LM
algorithm can converge to the correct results in situations where other minimizers in
potfitfail.

The paper is organized as follows. In sections 2 and 3, we briefly describe the potfit
program and the KIM project, respectively. This is followed by a discussion of the mod-
ifications that have been made to potfitin order to support the KIM API and the geodesic LM
algorithm. In section 5, we present the application of the extended potfitto the EDIP model.
We conclude in section 6 with a summary and a discussion of future directions.

2. The potfitprogram for fitting IPs

The potfitprogram [10–12] (http://www.potfit.net) is an open source implementation of the
force-matching method. It optimizes an IP’s parameters by minimizing a cost function defined
as the weighted sum of squares of deviations between calculated and reference quantities for
forces, energies and/or stresses. (The particular form of the cost function used in this paper is
described in section 5.) potfit consists of two largely independent components: IP imple-
mentations, and least-squares minimization. This program architecture makes it compara-
tively easy to add either an IP model or a minimization algorithm, which facilitated both
aspects of the current work.

potfitsupports both analytic and tabulated IPs. An analytic IP has a fixed functional form
with certain free parameters. Consider for example the simplest pair potential form where the
total energy of n interacting atoms is given by

ååf=
a b

ab
= =

V r
1
2

,
n n

1 1

( )

in which abr is the distance between atoms α and β, and f abr( ) is the energy in the bond
connecting them. An example of an analytic function, is the Lennard–Jones potential for
which
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where � and σ are the IP parameters. In contrast, for a tabulated IP, the functional form is
arbitrarily defined as an interpolation between sampling points that serve as the IP parameters.
For example, for a cubic spline, given a set of distances ¼r r r, , , N1 2( ) and a corresponding set
of function values f f f¼, , , N1 2( ), the functional form in the interval +r r,i i 1[ ] is defined as
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where the coefficients a b c d, , ,i i i i( ) are obtained from the conditions that f f=ri i( ) and
f f=+ +ri i1 1( ) (with different conditions at the ends that define the type of cubic spline). In
this scenario the tabulated function values f f f¼, , , N1 2( ) are the IP parameters. The form of
interpolation used (cubic, quartic, quintic, or others) can have a strong influence on the
predictions of the IP [39]. This is why the interpolation is considered part of the IP by
OpenKIM (see section 3) and stored along with the parameters. The potfitprogram supports
various functional forms including a variety of pair potentials, EAM potentials [19–21],
angular-dependent potentials [40], bond-order potentials (Tersoff potential [41, 42]), and
induced dipole potentials (Tangney–Scandolo [43]).

Once an IP is selected, different local and global minimization algorithms are available
within potfitto find the optimal set of parameters that minimize the cost function. The local
minimization algorithm is Powell’s method [44], which is a variant of the CG method.
Standard CG requires the derivative of the cost function with respect to the IP parameters. The
advantage of Powell’s method is that it constructs conjugate directions without requiring
derivatives. Powell’s algorithm begins with an initial guess for the IP parameters and con-
verges to a nearby minimum. For highly nonlinear IPs it is possible that different initial
guesses will lead to different solutions. To address this, global minimization algorithms
attempt to explore the parameter space to find the deepest minimum. potfitincludes simulated
annealing and differential evolution in this class of methods. See the original potfitpu-
blications [10–12] for detailed descriptions of the optimization algorithms.

3. The Open Knowledgebase of Interatomic Models project

The KIM project [16–18] is an international effort aimed at improving the reliability and
accuracy of molecular simulations using IPs. A schematic of the OpenKIM cyberinfras-
tructure is displayed in figure 1. First and foremost OpenKIM provides a repository for IPs at
https://openkim.org. Within the OpenKIM system IPs are referred to more generically as
models. A KIM model consists of the computer implementation of the IP along with any
parameters. A KIM IP can be a stand-alone model, or a model driver that reads in different
parameter files to define different models. All content in the OpenKIM system is archived
subject to strict provenance control and can be cited using permanent links. For example, later
in this article we will be analyzing the EDIP model for silicon [36–38] archived in OpenKIM
[16, 45, 46]. The citations contain a unique 12-digit KIM identifier and 3-digit version
number. This makes it possible to access the actual IP used in this publication at any later date
to reproduce the calculations—an ability lacking prior to OpenKIM archiving. All content

Figure 1. OpenKIM framework.
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within the OpenKIM repository is citeable in this manner and is accessible to external users
through web queries.

In addition to archiving IPs, OpenKIM is tasked with determining the suitability of an IP
for a given application. Since IPs are approximate, their transferability to phenomena they
were not fitted to reproduce is limited. To help define a rigorous method for IP selection,
OpenKIM includes a user-extendible suite of KIM tests for characterizing an IP. Each KIM
test computes the prediction of an IP for a well-defined material property (such as the surface
free energy for a given crystal face under specified temperature and pressure). Each IP in the
system is mated with all compatible KIM tests using an automated system called the Pro-
cessing Pipeline [47]. Whenever a new model or test is uploaded to OpenKIM by members of
the community, the pipeline launches to perform the new calculations. The results are stored
in the OpenKIM repository and can be explored and compared with first principles and
experimental reference data using text-based and graphical visualization tools [35]. Machine
learning based tools are being developed to use the accumulated information on the accuracy
of an IP’s predictions to help select for applications of choice [48].

The operation of the pipeline involves the coupling of pairs of computer codes, model
and test, which may be written in different computer languages and need to exchange
information. Specifically, the test repeatedly calls the model with new input (typically
positions and species of atoms) and requires the generated output (typically energy and forces
on atoms). This is made possible because all codes in OpenKIM conform to the KIM API
[22]. This is a standard developed as part of the KIM project for atomistic simulation codes to
exchange information. The KIM API is a lightweight efficient interface where only pointers
are exchanged between the interfacing codes, which can be written in any supported language
(C, C++, Fortran 77/90/95/2003, Python). A number of major simulation codes currently
support the KIM API (listed in section 1). Anyone of these codes can work seamlessly
(without having to be recompiled) with any KIM model stored on the same computer as a
dynamically linked library. (This is akin to a CD being placed in a player from any manu-
facturer and having its content played.) This greatly increases the portability of IPs. It allows
researchers to select the appropriate IP for their application and use it with their code of
choice, rather than being limited to the IPs that happen to come with it.

4. Extensions to potfit: geodesic LM and KIM-compliance

An extended version of the potfitcode has been developed that includes a geodesic LM
optimizer and support for the KIM API. The new code is available via https://www.potfit.
net. Details of the extensions are given below.

4.1. Geodesic LM algorithm

As explained in the introduction, IPs often have the characteristics of sloppy models. This can
cause the standard minimization algorithms in potfitto fail to converge. As an alternative we
have incorporated into potfitthe newly developed geodesic LM algorithm [14, 49–51].
Geodesic LM is an efficient method offering a higher likelihood of convergence for sloppy
models. The performance of the geodesic LM method is discussed in section 5.4. The method
is described next.

The least-squares optimization problem is to find the parameters q q q= ¼, , N1{ } that
minimize the cost function � �6C: N :
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where K is the second derivative of r with respect to q (a third-order matrix).
Before introducing geodesic LM, let us consider the more basic Gauss–Newton method.

This approach is based on a linear approximation of r [52],

q q q q qd d+ » +r r J . 4( ) ( ) ( ) ( )
Substituting (4) into (1) we see that,
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Taking the first derivative of (5) with respect to qd and setting it to zero, we have,

qd = - -J J J r. 6T 1 T( ) ( )
In (6) qd is a local decent direction of C, thus we can obtain the local minimum of C by
solving (6) iteratively. This is the Gauss–Newton method.

Levenberg [53] suggested a ‘damped version’ of (6) where the parameters are iteratively
updated according to

.qd l l= - + -J J D J r, 0. 7T 1 T( ) ( )
Here λ is a (non-negative) damping parameter, and =D I is the identity. The Levenberg
method is an interpolation between the Gauss–Newton algorithm and the steepest decent
algorithm. For small λ, (7) reduces to the Gauss–Newton equation in (6); whereas for large λ,
qd l» - - J r1 T , which lies along the gradient (i.e. the steepest descent direction) in (2).

In order to overcome slow convergence in directions of small gradients, Marquardt [54]
proposed taking =D J Jdiag T( ), where Adiag( ) returns a diagonal matrix with elements
equal to the diagonal elements of the square matrix (A). The downside of this approach is that
it greatly increases the susceptibility for parameter evaporation [50], i.e. the algorithm pushes
the parameters to infinite values without finding a good fit around saddle points.

To improve the efficiency of the LM method, Transtrum and Sethna [14, 49–51] pro-
posed the geodesic LM algorithm in which the minimization step size is constrained and the
residual is modified to include a second-order (geodesic acceleration) correction,

q q q q q q q qd d d d+ » + +r r J K
1
2

. 8T( ) ( ) ( ) ( ) ( )
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The cost function at q qd+ is then

q q q q q q q qd d d ld d+ = + + +r r DC
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where a Lagrange multiplier is introduced to enforce the constraint on the step size qd . Taking
the first derivative of (9) with respect to qd and setting it to zero, we have
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where the indices are included explicitly to avoid ambiguity and Einstein’s summation
convention over repeated indices is adopted. The step size dqi is written as a sum of two parts:
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where dqi
1( ) is given by (7) and dqi

2( ) includes the remaining terms. Substituting (11) and (7)
into (10), dqi
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where some small terms are ignored (see [50] for details) and the directional second derivative
dq dq=r Kp pkl k l

1 1( ) ( ) is used.
As seen from (12), the geodesic acceleration correction only depends on the directional

second derivative oriented along the first order correction qd 1( ). This feature is very important
because the cost to compute the directional second derivative is reasonably small and hence
will not overly add to the computational burden.

Finally, in order to prevent parameter evaporation in the geodesic LM algorithm and to
increase the likelihood of convergence, allowable step sizes must satisfy:

-q
q
d
d
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& &
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, 13
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( )
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where α is some parameter (usually smaller than 1) and whose optimal value depends on the
specific problem.

An open source implementation of the geodesic LM algorithm has been made available
by Transtrum [55]. In addition to the geodesic acceleration correction, the geodesic LM
package includes different options for updates to the damping parameter and the damping
matrix, different conditions for accepting uphill steps (i.e. steps that increase C), and whether
or not to use Broyden’s method [56] to lower the Jacobian update frequency. In this work, the
damping matrix is set to I , Umrigar and Nightingale’s method [50] is used to update the
damping parameter and to decide whether to accept uphill steps, and we do not employ
Broyden’s method to update the Jacobian because the computational cost in this problem is
not too high.

4.2. KIM-compliance

The original version of potfitis limited to using IPs built into the program. The philosophy
underlying the KIM API is different. It is based on the idea of separation between the
simulation code (called a ‘simulator’ in KIM parlance) and the IP (called the KIM Model).
Whenever the simulator (potfitin this case) requires the energy or forces for an atomic
configuration, it calls a KIM model with the necessary input (e.g. coordinates and species of
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the atoms) and receives back the required output (e.g. the forces on the atoms). Enforcing this
separation makes it possible for the simulator to work with any compatible KIM model in
plug-and-play fashion4. The KIM API is the standard for the exchange of information
between the communicating codes. In practice this works by having all data exchanged
between the simulator and IP stored in a data structure called the ‘KIM API Object.’ The
simulator and IP can access and change this data using KIM API library routines. The only
direct data transfer required between the programs is for the simulator to pass to the KIM
model the pointer to the location in memory of the KIM API Object. This makes the KIM API
extremely efficient and provides it with cross language compatibility (as described in
section 3). This means that potfit, which is written in C, can work efficiently and seamlessly
with KIM Models written in C, C++, Fortran 77/90/95/2003, and Python.

The potfitprogram has an unusual requirement for a simulator in that it needs to modify
the parameters of the IP that it is optimizing. This is supported by the KIM API through the
ability of KIMModels to ‘publish their parameters.’ A KIM model that does so has in its KIM
descriptor file a list of its parameters identified by name with the prefix ‘PARAM_FREE_’.
The potfituser can select any of these parameters to optimize. This is specified in the input
file to potfitalong with the initial guesses for the parameters, and the KIM model identifier
(see section 3).

The operation of the KIM-compliant implementation of potfitis described in figure 2.
The program reads in the input defining the optimization problem and then generates one or
more KIM API Objects containing the training set to be used for the optimization. At each

Figure 2. Flowchart of the KIM-compliant potfitprogram.

4 A KIM model is compatible with a simulator if it supports the required species and boundary conditions that the
simulator requires. This is automatically determined by the KIM API using metadata in ‘KIM descriptor’ files that
accompany the simulator and KIM Model.
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step in the optimization whenever the IP parameters need to be changed, the following steps
are performed using KIM API library calls:

(i) The KIM model parameters are changed in the KIM API Object;
(ii) The KIM model is called to compute the new energy and forces;
(iii) potfitacquires the energy and forces from the KIM API Object.

When the optimization is complete, potfitoutputs the final set of parameters and writes out a
new KIM Model, which can be uploaded to https://openkim.org if desired.

5. Application of KIM-potfitto EDIP

In this section we test the performance of KIM-potfitby applying it to the optimization of the
EDIP model for silicon [36–38] archived in OpenKIM [16, 45, 46]. The training set consists
of the energy and forces computed with the original EDIP model for a periodic configuration
of ´ ´5 5 5 conventional unit cells for a total of 1000 atoms perturbed off the ideal diamond
structure positions. Our objective is to see whether starting from different initial guesses for
the parameters, the optimization procedure is able to recover the EDIP parameters.

5.1. Cost function

As explained in section 2, IP optimization corresponds to minimizing a cost function
quantifying the difference between the IP’s predictions and a training set of reference data.
Our training set consists of a single atomic configuration with n=1000 atoms. The cost
function used in our analysis is

åq = - + -
a

a a
=
& &f fC w w E E

1
2

1
2

, 14
n

1
1

0 2
2

0 2( ) ( ) ( )

where q=a af f ( ) and af
0 are the predicted and reference force on atom α, q=E E ( ) and E0

are the predicted and reference energy, and w1 and w2 are weights. In our example we take
=w 1 eV1

2(Å ) , =w 1 1 eV2
2( ) to give a unitless cost function. The reference forces and

energy are defined as q=a af f0 0( ) and q=E E0 0( ), where q0 are the original EDIP

Figure 3. Contour plot of a cost function with two parameters. L1 and L2 are the
eigendirections of the Hessian of the cost function corresponding to the larger and
smaller eigenvalues, respectively. Points A and B represent two fits.
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parameters. EDIP’s functional form and parameters along with the training set used are given
in the supplementary information accompanying this article.

The Hessian of the cost function at the original parameters q0 follows from (3) as

åq q q q q q
=

¶
¶ ¶

=
¶
¶

¶
¶

+
¶
¶

¶
¶

q q q q qa

a a

=

f f
H

C
w w

E E
, 15ij

i j

n

i j i j

0
2

1
1

2
0 0 0 0 0

· ( )

where we have used - =qa af f 00
0( )∣ and - =qE E 00 0( )∣ . We will use the Hessian in the

next section to evaluate the sensitivity of EDIP predictions to its parameters.

5.2. EDIP sensitivity analysis

It is a common feature of IPs that the prediction of a model (including the cost function) are
weakly dependent on certain directions in parameter space, i.e. the models are sloppy [57].
This is demonstrated schematically in figure 3 showing the contour plot of a cost function
with only two parameters. Clearly the function varies more slowly along the L2 eigendir-
ection than along L1. As a result of this structure of qC ( ), convergence along certain
directions can be incomplete. For example in the figure, the minimum is located at O but a
convergence could terminate at a set of parameters offset to the optimal ones by qD . An
indication of whether this is occurring can be obtained by computing the angle between qD
and the eigenvectors of the Hessian q q¶ ¶ ¶C i j

2 evaluated at O,

q
q

a
L

=
D

D& &
cos . 16i

i· ( )

Point A and point B (corresponding to another fit) are equally close to the eigendirections
because they form the same angles.

In general, the eigendirections associated with smaller eigenvalues are more ‘sloppy’ and
we would expect larger scatter in the acos i values computed in (16) for an ensemble of fits.
Thus qualitatively we expect a behavior similar to that shown in figure 4, where the scatter in

acos i obtained from a large number of fitting attempts with different initial guesses would
occupy a region similar to RegionI in the figure with larger scatter along directions asso-
ciated with smaller eigenvalues. This would be the signature of a sloppy model.

Figure 4. Expected region for normalized projected parameter errors if the fits are
aligned along the sloppy direction(s). The horizontal axis corresponds to the
eigenvalues of the Hessian sorted in increasing order.
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We perform this analysis for EDIP. EDIP has 13 parameters, but only 11 of them are
used in this study with the two cutoffs excluded. The training set is described in section 5.1.
We take an ensemble of 100 initial guesses obtained by adding to the original EDIP para-
meters random numbers ρ drawn from a Gaussian distribution with average zero and a
standard deviation of 0.15, i.e. q q r´ + = ¼i1 , 1, ,11i i

0≔ ( ) , and perform the fitting
procedure for each one. The relative errors *q q q q qD = -i i i i i

0 0 0( ) (for = ¼i 1, ,11)
between the parameters *q obtained in the fitting procedure and the original EDIP parameters
q0 for all 100 optimizations are shown in figure 5(a). No clear trend is apparent. Instead let us
plot the cosine defined in (16) as done schematically in figure 4. To improve the scaling of the
plot let us modify the definition to use the logarithm of the parameters, q q= logi i

ˆ . (This is
important when different parameters have very different magnitudes.) The definition
equivalent to (16) is then

q
q

a
L

=
D
D& &

cos , 17i
iˆ

ˆ · ˆ
ˆ ( )

where *q q qD = -
0ˆ ˆ ˆ andLi

ˆ is the ith eigendirection of the Hessian of the cost function C in
the logarithm parameter space, q q q q q q¶ ¶ ¶ = ¶ ¶ ¶C Ci j i j i j

2 2ˆ ˆ . The results for EDIP are
plotted in figure 5(b), and are very much in line with the expected behavior in figure 4. In
particular, we see that the spread is mostly accounted for by the first four eigenterms each of
which corresponds to a particular combination of parameters as quantified by the
eigendirections.

5.3. Cost along eigendirections

The results in the previous section support the conjecture that the observed scatter in results is
due to sloppy directions. However, since the Hessian is a local measure of the structure of C
near the optimal solution, it is possible that there are other minima further away that can trap
the optimization process. To explore this possibility, we plot the cost function along the
different eigendirections,

Figure 5. Errors in fitting the EDIP parameters. (a) Relative errors. (b) Normalized error
projected on the eigendirections of the Hessian of the cost function in the logarithm
parameter space.
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q L= +lC s C s , 18i i
0( ) ( ) ( )

where as before q0 corresponds to the original EDIP parameters and s is a scalar factor that
can be positive or negative. The results are plotted in figure 6 for all eigendirections from the
smallest eigenvalue 1 to the largest eigenvalue 11. The cost lC varies more slowly along the
eigendirections associated with the five smallest eigenvalues than along other directions, i.e.
the cost function is more flat in these five directions. (Note that the scale of the y-axis is not
the same in the plots, and the first five plots have a significantly smaller range than the others.)
This is in agreement with the previous observation that the spread of the fitted parameters is
larger along these directions. We also see that an additional local minimum (aside from the

Figure 6. Cost along eigendirections. lC1 is associated with the smallest eigenvalue, and
lC11 is associated with the largest. For lC10 and lC11 the insets show a zoomed view of the
flat portions of the curves.
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one associated with original parameters at s=0) is only apparent along the positive 11

Table 1. Statistics on the optimization of EDIP. The number of minimization attempts
(out of a 100) that converge to a cost function below the tolerance specified on the left
for the three minimizers studied and the three perturbation amplitudes (0.1, 0.2 and 0.3)
used to generate the initial guesses.

Powell Standard LM Geodesic LM

Cost(C) 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

< -C 10 7 85 37 7 68 46 9 100 60 14
< -C 10 5 85 39 8 76 49 9 100 60 14
< -C 10 3 89 47 9 100 58 16 100 64 21
< -C 10 1 93 68 23 100 79 25 100 84 33
<C 100 98 78 36 100 85 39 100 90 51
<C 101 100 94 65 100 96 54 100 98 76

Figure 7. Normalized cost C̄ versus the number of cost function evaluations Ncost. The
initial guesses for the parameters are perturbations off the original EDIP parameters
drawn from a Gaussian distribution with zero mean and standard deviations of (a) 0.1,
(b) 0.2, and (c) 0.3.
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direction at a significantly higher cost function5. This minimum can trap the optimization
algorithm for initial guesses in its vicinity, however over a large range near the original
parameters there is only a single minimum. This suggests that a local minimizer is sufficient
for this IP (using different initial guesses), which can reduce the fitting time drastically
compared with global minimization efforts.

5.4. Performance of minimization algorithms

Having established in the previous section that a local minimization is sufficient for EDIP (at
least in the vicinity of the original parameters), we explore the efficiency of Powell’s method,
the geodesic LM algorithm added to potfit, and the standard LM algorithm described in [58]
(see section 4.1 for details of LM and geodesic LM). The three minimizers are applied to fit
EDIP. The initial guesses for the parameters are obtained in the same way as discussed in
section 5.2. Three sets of 100 initial guesses are constructed by perturbing the original EDIP
parameters by random numbers drawn from a Gaussian distribution with zero mean and
standard deviations of 0.1, 0.2 and 0.3. The results are given in table 1 showing for each
minimizer and perturbation magnitude the number of attempts (out of 100) that converged
below the cost level indicated on the left. For example for Powell’s method with a pertur-
bation magnitude of 0.2, the algorithm converged to a cost below 10−3 for 46 out of the 100
initial guesses. We see that geodesic LM outperforms the other two algorithms for all per-
turbation amplitudes. In all cases it is able to converge from more initial guess to below the
specified tolerance. The standard LM algorithm is superior to Powell in all cases except for
the smallest perturbation.

We are also interested in the computational cost of the different minimization methods.
The Powell’s algorithm requires only evaluations of the cost function, whereas LM and
geodesic LM require the gradient of the cost function with respect to the parameters. The
gradient is computed using numerical differentiation, which only requires evaluations of the
cost function. Therefore the number of cost function evaluations (Ncost) performed during the
minimization is a good metric for comparing the performance of all three methods. Figure 7
shows for each perturbation amplitude, the normalized cost function =C C Cinit¯ (whereCinit

is the cost at the start of the minimization) versus Ncost for the three methods. The initial flat
region is associated with the setup stage of the methods (e.g. building an initial estimate for
the Hessian in Powell’s method). Examining the plots, we see that Powell and LM are
comparable in performance, whereas geodesic LM is about an order of magnitude slower.
Thus geodesic LM’s superior convergence properties come at the expense of a significant
increase in the computational burden. For the current problem this tradeoff is acceptable since
geodesic LM converges in most cases in less than 1000 cost function evaluations, which is
quite reasonable for the current problem. However, when computation of the cost function is
expensive (due to a larger training set or more complex IP) or when more steps are needed to
converge as would be expected for IPs with more parameters, the computational cost of
geodesic LM may be an issue.

6. Summary and future directions

The accuracy of an IP is critical to atomic-scale simulations. Designing a high-quality
transferable IP is a very challenging task due to the complexity of the quantum mechanical

5 We verified that this is a local minimum by checking the eigenvalues of the Hessian at the minimum and finding
that they are all positive.
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behavior that the IP is attempting to mimic. The developer of an IP must select a functional
form with adjustable parameters and a suitably weighted training set of first principles and
experimental reference data. The IP is then optimized with respect to its parameters to
reproduce the training set as closely as possible in terms of specified cost function. It is then
validated against an independent test set of reference data. If the validation results are
inadequate, the functional form and/or the training set must be amended and the process
repeated until a satisfactory IP is obtained. This process is made more difficult by the fact that
many IPs are sloppy models in the sense that their predictions are weakly dependent on
certain combinations of their parameters. This can cause optimization algorithms to fail to
converge.

potfitis an IP fitting program based on the force-matching method. The idea is to include
in the training set the forces on atoms computed from first principles for a set of atomic
configurations of interest. This allows the developer to train the IP with a large amount of
reference data spanning a larger portion of configuration space. We have extended potfitin
two ways:

(i) We have incorporated a new optimization method based on the geodesic LM algorithm.
Although slower than some other local minimizers it has improved convergence
properties for sloppy models. This is the first application of geodesic LM to IP
optimization.

(ii) We have adapted potfitto be compatible with the KIM API. This allows potfitto
optimize KIM Models stored in the KIM Repository at https://openkim.org. This greatly
expands the functional forms that potfit can optimize. The resulting IPs are portable and
can be used seamlessly with many major software packages that support the KIM API.

We study the effectiveness of the new code by using it to optimize the EDIP model for
silicon. This IP is not available within the original potfitcode, but is available as a KIM
Model. We use EDIP to generate a training set of atomic configurations and test whether
potfitcan reproduce the EDIP parameters from different initial guesses. We make several
observations:

(i) EDIP displays the characteristics of a sloppy model. For different initial guesses we find
a large scatter in the parameter values. An analysis shows that the scatter is maximal
along the eigendirections of the Hessian of the cost function associated with the smallest
eigenvalues. Thus the IP’s behavior depends primarily on a few stiff combinations of
parameters.

(ii) At least in the vicinity of the original parameters the cost function is largely convex with
only two local minima. This suggests that a local minimization method with different
random initial guesses is sufficient.

(iii) The geodesic LM algorithm was on average twice as likely to converge to the correct
solution from different initial guesses than standard LM or Powell’s method that tended
to get trapped along sloppy directions. However, the improved performance comes at the
cost of about an order of magnitude increase in computational expense for geodesic LM.
For the current problem the computations were not prohibitive and geodesic LM was the
preferred method.

The extended potfitcode is the first step in developing an IP fitting framework based on
the OpenKIM project. Such a framework would make it possible for the developer to draw
upon the large selection of KIM tests (standardized codes for computing material properties)
and reference data in OpenKIM. Models developed using this framework and the training set
used in the fit will then be archived at https://openkim.org. The latter is an important
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advantage as it means that other developers will be able to draw upon previous work and
adapt a model to a new application starting from the training set used in its development. This
framework is currently under development for use in fitting IPs for 2D materials [59].
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