Title
A single sentence description.
|
ElasticConstantsCubic_sc_Li |
---|---|
Description | |
Species
The supported atomic species.
| Li |
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
|
Computer generated |
Contributor |
Junhao Li |
Maintainer |
Junhao Li |
Published on KIM | 2016 |
How to Cite | Click here to download this citation in BibTeX format. |
Funding | Not available |
Short KIM ID
The unique KIM identifier code.
| TE_589428389686_002 |
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
| ElasticConstantsCubic_sc_Li__TE_589428389686_002 |
Citable Link | https://openkim.org/cite/TE_589428389686_002 |
KIM Item Type | Test |
Driver | ElasticConstantsCubic__TD_011862047401_002 |
Properties
Properties as defined in kimspec.edn.
These properties are inhereted from the Test Driver.
| |
KIM API Version | 1.6 |
Programming Language(s)
The programming languages used in the code and the percentage of the code written in each one.
| 100.00% Python |
Previous Version | ElasticConstantsCubic_sc_Li__TE_589428389686_001 |
ElasticConstantsCubic_sc_Li__TE_589428389686_002.txz | Tar+XZ | Linux and OS X archive |
ElasticConstantsCubic_sc_Li__TE_589428389686_002.zip | Zip | Windows archive |
This Test requires a Test Driver. Archives for the Test Driver ElasticConstantsCubic__TD_011862047401_002 appear below.
ElasticConstantsCubic__TD_011862047401_002.txz | Tar+XZ | Linux and OS X archive |
ElasticConstantsCubic__TD_011862047401_002.zip | Zip | Windows archive |
The Tunable Intrinsic Ductility Potential (TIDP) of Rajan, Warner and Curtin is based on standard Morse potential. The ductility is tuned by altering the tail of \(\varphi(r)\) while leaving the energy well unchanged. The functional form is
\[\varphi(r)= \begin{cases} (1-\exp[-\alpha(r-1)])^2-1 & r \le r_1 \\ A_1 r^3 + B_1 r^2 + C_1 r + D_1 & r_1 < r \le r_2 \\ A_2 r^3 + B_2 r^2 + C_2 r + D_2 & r_2 < r \le r_3 \\ 0 & r_3 < r \end{cases}\]The TIDP model has 12 parameters:
\[\alpha, \quad r_1, \quad r_2, \quad r_3, \quad A_1, \quad B_1, \quad C_1, \quad D_1, \quad A_2, \quad B_2, \quad C_2, \quad D_2.\]