Jump to: Models | Files | Wiki

CohesiveEnergyVsLatticeConstant_bcc_Xe__TE_283402803787_002

Title
A single sentence description.
Cohesive energy versus lattice constant curve for bcc Xenon
Description This Test computes an energy vs. lattice constant curve for bcc Xenon. The curve is computed for lattice constants ranging from 0.8*a_0 to 1.5*a_0, where a_0 represents the equilibrium lattice constant. The value for a_0 is obtained by querying the KIM database for the results of LatticeConstantCubicEnergy_bcc_Xe when paired against the Model being used.
Species
The supported atomic species.
Xe
Contributor karls
Maintainer karls
Author Daniel S. Karls
Publication Year 2018
Item Citation Click here to download a citation in BibTeX format.
Short KIM ID
The unique KIM identifier code.
TE_283402803787_002
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
CohesiveEnergyVsLatticeConstant_bcc_Xe__TE_283402803787_002
Citable Link https://openkim.org/cite/TE_283402803787_002
KIM Item TypeTest
DriverCohesiveEnergyVsLatticeConstant__TD_554653289799_002
Properties
Properties as defined in kimspec.edn. These properties are inhereted from the Test Driver.
KIM API Version2.0
Simulator Name
The name of the simulator as defined in kimspec.edn. This Simulator Name is inhereted from the Test Driver.
LAMMPS
Programming Language(s)
The programming languages used in the code and the percentage of the code written in each one.
100.00% Python
Previous Version CohesiveEnergyVsLatticeConstant_bcc_Xe__TE_283402803787_001


Models

EAM_Dynamo__MD_120291908751_005
Model Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
EAM_Dynamo_SmirnovaKuskinStarikov_2013_UMoXe__MO_679329885632_005 view 1723
LJ_Shifted__MD_498634107543_003
Model Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
LJ_Shifted_Bernardes_1958HighCutoff_Xe__MO_796748253903_003 view 1539
LJ_Shifted_Bernardes_1958LowCutoff_Xe__MO_648694198005_003 view 1283
LJ_Shifted_Bernardes_1958MedCutoff_Xe__MO_849320763277_003 view 1466
LJ__MD_414112407348_003
Model Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
LJ_ElliottAkerson_2015_Universal__MO_959249795837_003 view 916


Errors

  • No Errors associated with this Test




Download Dependency

This Test requires a Test Driver. Archives for the Test Driver CohesiveEnergyVsLatticeConstant__TD_554653289799_002 appear below.


CohesiveEnergyVsLatticeConstant__TD_554653289799_002.txz Tar+XZ Linux and OS X archive
CohesiveEnergyVsLatticeConstant__TD_554653289799_002.zip Zip Windows archive

Wiki

Wiki is ready to accept new content.

Login to edit Wiki content