Jump to: Tests | Visualizers | Files | Wiki

DUNN_WenTadmor_2019v3_C__MO_714772088128_000

Interatomic potential for Carbon (C).
Use this Potential

Title
A single sentence description.
Dropout uncertainty neural network (DUNN) potential for condensed-matter carbon systems developed by Wen and Tadmor (2019) v000
Description
A short description of the Model describing its key features including for example: type of model (pair potential, 3-body potential, EAM, etc.), modeled species (Ac, Ag, ..., Zr), intended purpose, origin, and so on.
A dropout uncertainty neural network (DUNN) potential for condensed-matter carbon systems with a dropout ratio of 0.3. This is an ensemble model consisting of 100 different network structures obtained by dropout. Before dropout, there are three hidden layers each containing 128 neurons; each neuron in the hidden layers has probability 0.3 of being removed from the network. By default, the model will run in the 'mean' mode where the output energy, forces, and virial are obtained by averaging over the 100 ensembles. If desired, one can set the 'active_member_id' to '0' to use the fully-connected structure or to '1, 2, ..., 100' to use a single ensemble member. When multiple ensemble members are used, the ensemble average of the energy and forces are what are ultimately returned for a given configuration.
Species
The supported atomic species.
C
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
None
Contributor Mingjian Wen
Maintainer Mingjian Wen
Developer Mingjian Wen
Ellad B. Tadmor
Published on KIM 2019
How to Cite

This Model originally published in [1] is archived in OpenKIM [2-5].

[1] Wen M, Tadmor EB. Uncertainty quantification in molecular simulations with dropout neural network potentials. npj Computational Materials. 2020;6(1). doi:10.1038/s41524-020-00390-8 — (Primary Source) A primary source is a reference directly related to the item documenting its development, as opposed to other sources that are provided as background information.

[2] Wen M, Tadmor EB. Dropout uncertainty neural network (DUNN) potential for condensed-matter carbon systems developed by Wen and Tadmor (2019) v000. OpenKIM; 2019. doi:10.25950/656f7a62

[3] Wen M, Tadmor EB. A dropout uncertainty neural network (DUNN) model driver v000. OpenKIM; 2019. doi:10.25950/9573ca43

[4] Tadmor EB, Elliott RS, Sethna JP, Miller RE, Becker CA. The potential of atomistic simulations and the Knowledgebase of Interatomic Models. JOM. 2011;63(7):17. doi:10.1007/s11837-011-0102-6

[5] Elliott RS, Tadmor EB. Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API). OpenKIM; 2011. doi:10.25950/ff8f563a

Click here to download the above citation in BibTeX format.
Citations

This panel presents information regarding the papers that have cited the interatomic potential (IP) whose page you are on.

The OpenKIM machine learning based Deep Citation framework is used to determine whether the citing article actually used the IP in computations (denoted by "USED") or only provides it as a background citation (denoted by "NOT USED"). For more details on Deep Citation and how to work with this panel, click the documentation link at the top of the panel.

The word cloud to the right is generated from the abstracts of IP principle source(s) (given below in "How to Cite") and the citing articles that were determined to have used the IP in order to provide users with a quick sense of the types of physical phenomena to which this IP is applied.

The bar chart shows the number of articles that cited the IP per year. Each bar is divided into green (articles that USED the IP) and blue (articles that did NOT USE the IP).

Users are encouraged to correct Deep Citation errors in determination by clicking the speech icon next to a citing article and providing updated information. This will be integrated into the next Deep Citation learning cycle, which occurs on a regular basis.

OpenKIM acknowledges the support of the Allen Institute for AI through the Semantic Scholar project for providing citation information and full text of articles when available, which are used to train the Deep Citation ML algorithm.

This panel provides information on past usage of this interatomic potential (IP) powered by the OpenKIM Deep Citation framework. The word cloud indicates typical applications of the potential. The bar chart shows citations per year of this IP (bars are divided into articles that used the IP (green) and those that did not (blue)). The complete list of articles that cited this IP is provided below along with the Deep Citation determination on usage. See the Deep Citation documentation for more information.

Help us to determine which of the papers that cite this potential actually used it to perform calculations. If you know, click the  .
Funding Not available
Short KIM ID
The unique KIM identifier code.
MO_714772088128_000
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
DUNN_WenTadmor_2019v3_C__MO_714772088128_000
DOI 10.25950/656f7a62
https://doi.org/10.25950/656f7a62
https://commons.datacite.org/doi.org/10.25950/656f7a62
KIM Item Type
Specifies whether this is a Portable Model (software implementation of an interatomic model); Portable Model with parameter file (parameter file to be read in by a Model Driver); Model Driver (software implementation of an interatomic model that reads in parameters).
Portable Model using Model Driver DUNN__MD_292677547454_000
DriverDUNN__MD_292677547454_000
KIM API Version2.0
Potential Type dunn

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
P vc-dimer-continuity-c1 informational
The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.
Results Files
P vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: C


Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

Species: C


Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: C


Dislocation Core Energies

This graph shows the dislocation core energy of a cubic crystal at zero temperature and pressure for a specific set of dislocation core cutoff radii. After obtaining the total energy of the system from conjugate gradient minimizations, non-singular, isotropic and anisotropic elasticity are applied to obtain the dislocation core energy for each of these supercells with different dipole distances. Graphs are generated for each species supported by the model.

(No matching species)

FCC Elastic Constants

This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: C


FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: C


FCC Stacking Fault Energies

This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Surface Energies

This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: C


Cubic Crystal Basic Properties Table

Species: C





Cohesive energy versus lattice constant curve for monoatomic cubic lattices v003

Creators:
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/64cb38c5

This Test Driver uses LAMMPS to compute the cohesive energy of a given monoatomic cubic lattice (fcc, bcc, sc, or diamond) at a variety of lattice spacings. The lattice spacings range from a_min (=a_min_frac*a_0) to a_max (=a_max_frac*a_0) where a_0, a_min_frac, and a_max_frac are read from stdin (a_0 is typically approximately equal to the equilibrium lattice constant). The precise scaling and number of lattice spacings sampled between a_min and a_0 (a_0 and a_max) is specified by two additional parameters passed from stdin: N_lower and samplespacing_lower (N_upper and samplespacing_upper). Please see README.txt for further details.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Cohesive energy versus lattice constant curve for bcc C v004 view 19017
Cohesive energy versus lattice constant curve for diamond C v004 view 884856
Cohesive energy versus lattice constant curve for fcc C v004 view 358036
Cohesive energy versus lattice constant curve for sc C v004 view 15277


Elastic constants for cubic crystals at zero temperature and pressure v006

Creators: Junhao Li and Ellad Tadmor
Contributor: tadmor
Publication Year: 2019
DOI: https://doi.org/10.25950/5853fb8f

Computes the cubic elastic constants for some common crystal types (fcc, bcc, sc, diamond) by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for bcc C at zero temperature v006 view 202540
Elastic constants for fcc C at zero temperature v006 view 318630
Elastic constants for sc C at zero temperature v006 view 37019


Equilibrium structure and energy for a crystal structure at zero temperature and pressure v002

Creators:
Contributor: ilia
Publication Year: 2024
DOI: https://doi.org/10.25950/2f2c4ad3

Computes the equilibrium crystal structure and energy for an arbitrary crystal at zero temperature and applied stress by performing symmetry-constrained relaxation. The crystal structure is specified using the AFLOW prototype designation. Multiple sets of free parameters corresponding to the crystal prototype may be specified as initial guesses for structure optimization. No guarantee is made regarding the stability of computed equilibria, nor that any are the ground state.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium crystal structure and energy for C in AFLOW crystal prototype A_cF16_227_c v002 view 202999
Equilibrium crystal structure and energy for C in AFLOW crystal prototype A_cF240_202_h2i v002 view 61248060
Equilibrium crystal structure and energy for C in AFLOW crystal prototype A_cF8_227_a v002 view 134097
Equilibrium crystal structure and energy for C in AFLOW crystal prototype A_cI16_206_c v002 view 246334
Equilibrium crystal structure and energy for C in AFLOW crystal prototype A_cI16_229_f v002 view 275414
Equilibrium crystal structure and energy for C in AFLOW crystal prototype A_cI8_214_a v002 view 121916
Equilibrium crystal structure and energy for C in AFLOW crystal prototype A_cP1_221_a v002 view 89081
Equilibrium crystal structure and energy for C in AFLOW crystal prototype A_cP20_221_gj v002 view 226236
Equilibrium crystal structure and energy for C in AFLOW crystal prototype A_hP12_194_bc2f v002 view 89013
Equilibrium crystal structure and energy for C in AFLOW crystal prototype A_hP12_194_e2f v002 view 179413
Equilibrium crystal structure and energy for C in AFLOW crystal prototype A_hP16_194_e3f v002 view 226530
Equilibrium crystal structure and energy for C in AFLOW crystal prototype A_hP2_191_c v002 view 70725
Equilibrium crystal structure and energy for C in AFLOW crystal prototype A_hP4_194_bc v002 view 69145
Equilibrium crystal structure and energy for C in AFLOW crystal prototype A_hP4_194_f v002 view 68294
Equilibrium crystal structure and energy for C in AFLOW crystal prototype A_hP8_194_ef v002 view 70360
Equilibrium crystal structure and energy for C in AFLOW crystal prototype A_hR10_166_5c v002 view 200143
Equilibrium crystal structure and energy for C in AFLOW crystal prototype A_hR14_166_7c v002 view 303375
Equilibrium crystal structure and energy for C in AFLOW crystal prototype A_hR2_166_c v002 view 67930
Equilibrium crystal structure and energy for C in AFLOW crystal prototype A_hR4_166_2c v002 view 57661
Equilibrium crystal structure and energy for C in AFLOW crystal prototype A_hR60_166_2h4i v002 view 53627675
Equilibrium crystal structure and energy for C in AFLOW crystal prototype A_mC16_12_4i v002 view 186351
Equilibrium crystal structure and energy for C in AFLOW crystal prototype A_oC16_65_pq v002 view 162715
Equilibrium crystal structure and energy for C in AFLOW crystal prototype A_oC8_65_gh v002 view 91930
Equilibrium crystal structure and energy for C in AFLOW crystal prototype A_oI120_71_lmn6o v002 view 5433159
Equilibrium crystal structure and energy for C in AFLOW crystal prototype A_oP16_62_4c v002 view 187627
Equilibrium crystal structure and energy for C in AFLOW crystal prototype A_tI8_139_h v002 view 125376


Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure v007

Creators: Daniel S. Karls and Junhao Li
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/2765e3bf

Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium zero-temperature lattice constant for bcc C v007 view 38204
Equilibrium zero-temperature lattice constant for diamond C v007 view 278212
Equilibrium zero-temperature lattice constant for fcc C v007 view 108441
Equilibrium zero-temperature lattice constant for sc C v007 view 39092





This Model requires a Model Driver. Archives for the Model Driver DUNN__MD_292677547454_000 appear below.


DUNN__MD_292677547454_000.txz Tar+XZ Linux and OS X archive
DUNN__MD_292677547454_000.zip Zip Windows archive
Wiki is ready to accept new content.

Login to edit Wiki content