Jump to: Tests | Visualizers | Files | Wiki

EAM_Dynamo_AcklandTichyVitek_1987v2_Ag__MO_055919219575_000

Title
A single sentence description.
Finnis-Sinclair potential (LAMMPS cubic hermite tabulation) for Ag developed by Ackland et al. (1987), version 2 refitted for radiation studies v000
Description
A short description of the Model describing its key features including for example: type of model (pair potential, 3-body potential, EAM, etc.), modeled species (Ac, Ag, ..., Zr), intended purpose, origin, and so on.
Finnis-Sinclair potential for Ag developed by Ackland et al. (1987). The total energy is regarded as consisting of a pair-potential part and a many body cohesive part. Both these parts are functions of the atomic separations only and are represented by cubic splines, fitted to various bulk properties. Using this potential, point defects, surfaces (including the surface reconstructions) and grain boundaries have been studied and satisfactory agreement with available experimental data has been found.

In version 2 of the potential, according to the developer Graeme Ackland (as reported in the NIST IPRP), close-range repulsion has been added for radiation studies. The previous version of the potential is available in OpenKIM, see https://openkim.org/cite/MO_212700056563_004
Species
The supported atomic species.
Ag
Content Origin NIST IPRP (https://www.ctcms.nist.gov/potentials/Ag.html)
Content Other Locations http://homepages.ed.ac.uk/graeme/moldy/moldy.html
Contributor tadmor
Maintainer tadmor
Author Ellad Tadmor
Publication Year 2018
Source Citations
A citation to primary published work(s) that describe this KIM Item.

Ackland GJ, Tichy G, Vitek V, Finnis MW (1987) Simple N-body potentials for the noble metals and nickel. Philosophical Magazine A 56(6):735–756. doi:10.1080/01418618708204485

Item Citation Click here to download a citation in BibTeX format.
Short KIM ID
The unique KIM identifier code.
MO_055919219575_000
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
EAM_Dynamo_AcklandTichyVitek_1987v2_Ag__MO_055919219575_000
DOI 10.25950/6f43c335
https://doi.org/10.25950/6f43c335
https://search.datacite.org/works/10.25950/6f43c335
KIM Item Type
Specifies whether this is a Stand-alone Model (software implementation of an interatomic model); Parameterized Model (parameter file to be read in by a Model Driver); Model Driver (software implementation of an interatomic model that reads in parameters).
Parameterized Model using Model Driver EAM_Dynamo__MD_120291908751_005
DriverEAM_Dynamo__MD_120291908751_005
KIM API Version2.0
Programming Language(s)
The programming languages used in the code and the percentage of the code written in each one. "N/A" means "not applicable" and refers to model parameterizations which only include parameter tables and have no programming language.
N/A

Verification Check Dashboard

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-species-supported-as-stated mandatory
The model supports all species it claims to support; see full description.
Results Files
P vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
P vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
A vc-forces-numerical-derivative consistency
Forces computed by the model agree with numerical derivatives of the energy; see full description.
Results Files
P vc-dimer-continuity-c1 informational
The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.
Results Files
P vc-objectivity informational
Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.
Results Files
P vc-inversion-symmetry informational
Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.
Results Files
P vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files
P vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files

Visualizers (in-page)


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Ag

Click on any thumbnail to get a full size image.



Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

Species: Ag

Click on any thumbnail to get a full size image.



Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Ag

Click on any thumbnail to get a full size image.



FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Ag

Click on any thumbnail to get a full size image.



SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Ag

Click on any thumbnail to get a full size image.



Cubic Crystal Basic Properties Table

Species: Ag



Tests

CohesiveEnergyVsLatticeConstant__TD_554653289799_002
This Test Driver uses LAMMPS to compute the cohesive energy of a given monoatomic cubic lattice (fcc, bcc, sc, or diamond) at a variety of lattice spacings. The lattice spacings range from a_min (=a_min_frac*a_0) to a_max (=a_max_frac*a_0) where a_0, a_min_frac, and a_max_frac are read from stdin (a_0 is typically approximately equal to the equilibrium lattice constant). The precise scaling and number of lattice spacings sampled between a_min and a_0 (a_0 and a_max) is specified by two additional parameters passed from stdin: N_lower and samplespacing_lower (N_upper and samplespacing_upper). Please see README.txt for further details.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
CohesiveEnergyVsLatticeConstant_bcc_Ag__TE_776768886429_002 view 2278
CohesiveEnergyVsLatticeConstant_diamond_Ag__TE_267703329770_002 view 2663
CohesiveEnergyVsLatticeConstant_fcc_Ag__TE_295388173914_002 view 2021
CohesiveEnergyVsLatticeConstant_sc_Ag__TE_229146981356_002 view 2920
ElasticConstantsCubic__TD_011862047401_004
Computes the cubic elastic constants for some common crystal types (fcc, bcc, sc) by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
ElasticConstantsCubic_bcc_Ag__TE_800990874257_004 view 2053
ElasticConstantsCubic_fcc_Ag__TE_058380161986_004 view 1219
ElasticConstantsCubic_sc_Ag__TE_042440763055_004 view 1701
ElasticConstantsHexagonal__TD_612503193866_003
Computes the elastic constants for hcp crystals by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
ElasticConstantsHexagonal_hcp_Ag__TE_568716778280_003 view 3445
LatticeConstantCubicEnergy__TD_475411767977_006
Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
LatticeConstantCubicEnergy_bcc_Ag__TE_162589006162_006 view 738
LatticeConstantCubicEnergy_diamond_Ag__TE_188192567838_006 view 1348
LatticeConstantCubicEnergy_fcc_Ag__TE_772075082810_006 view 963
LatticeConstantCubicEnergy_sc_Ag__TE_222254896070_006 view 930
LatticeConstantHexagonalEnergy__TD_942334626465_004
Calculates lattice constant of hexagonal bulk structures at zero temperature and pressure by using simplex minimization to minimize the potential energy.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
LatticeConstantHexagonalEnergy_hcp_Ag__TE_760885515687_004 view 10006
PhononDispersionCurve__TD_530195868545_003
Calculates the phonon dispersion relations for fcc lattices and records the results as curves.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
PhononDispersionCurve_fcc_Ag__TE_916421991486_003 view 82908
StackingFaultFccCrystal__TD_228501831190_001
Intrinsic and extrinsic stacking fault energies, unstable stacking fault energy, unstable twinning energy, stacking fault energy as a function of fractional displacement, and gamma surface for a monoatomic FCC lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
StackingFaultFccCrystal_Ag_0bar__TE_802425246128_001 view 3860820
SurfaceEnergyCubicCrystalBrokenBondFit__TD_955413365818_003
Calculates the surface energy of several high symmetry surfaces and produces a broken-bond model fit. In latex form, the fit equations are given by:

E_{FCC} (\vec{n}) = p_1 (4 \left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\right)) + p_2 (8 \left( |x| + |y| + |z|\right)) + p_3 (2 ( |x+ 2y + z| + |x+2y-z| + |x-2y + z| + |x-2y-z| + |2x+y+z| + |2x+y-z| +|2x-y+z| +|2x-y-z| +|x+y+2z| +|x+y-2z| +|x-y+2z| +|x-y-2z| ) + c

E_{BCC} (\vec{n}) = p_1 (6 \left( | x+y+z| + |x+y-z| + |-x+y-z| + |x-y+z| \right)) + p_2 (8 \left( |x| + |y| + |z|\right)) + p_3 (4 \left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\right)) +c.

In Python, these two fits take the following form:

def BrokenBondFCC(params, index):

import numpy
x, y, z = index
x = x / numpy.sqrt(x**2.+y**2.+z**2.)
y = y / numpy.sqrt(x**2.+y**2.+z**2.)
z = z / numpy.sqrt(x**2.+y**2.+z**2.)

return params[0]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*(abs(x+2*y+z) + abs(x+2*y-z) +abs(x-2*y+z) +abs(x-2*y-z) + abs(2*x+y+z) +abs(2*x+y-z) +abs(2*x-y+z) +abs(2*x-y-z) + abs(x+y+2*z) +abs(x+y-2*z) +abs(x-y+2*z) +abs(x-y-2*z))+params[3]

def BrokenBondBCC(params, x, y, z):


import numpy
x, y, z = index
x = x / numpy.sqrt(x**2.+y**2.+z**2.)
y = y / numpy.sqrt(x**2.+y**2.+z**2.)
z = z / numpy.sqrt(x**2.+y**2.+z**2.)

return params[0]*6*(abs(x+y+z) + abs(x-y-z) + abs(x-y+z) + abs(x+y-z)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[3]
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
SurfaceEnergyCubicCrystalBrokenBondFit_fcc_Ag__TE_069649486058_003 view 19058


Errors

  • No Errors associated with this Model




Download Dependency

This Model requires a Model Driver. Archives for the Model Driver EAM_Dynamo__MD_120291908751_005 appear below.


EAM_Dynamo__MD_120291908751_005.txz Tar+XZ Linux and OS X archive
EAM_Dynamo__MD_120291908751_005.zip Zip Windows archive

Wiki

Wiki is ready to accept new content.

Login to edit Wiki content