Jump to: Tests | Visualizers | Files | Wiki

EAM_Dynamo_BonnyCastinBullens_2013_FeW__MO_737567242631_000

Title
A single sentence description.
EAM potential (LAMMPS cubic hermite tabulation) for the Fe-W system developed by Bonny et al. (2013) v000
Description
A short description of the Model describing its key features including for example: type of model (pair potential, 3-body potential, EAM, etc.), modeled species (Ac, Ag, ..., Zr), intended purpose, origin, and so on.
EAM potential for the Fe-W system developed by Bonny et al. (2013).
Species
The supported atomic species.
Fe, W
Disclaimer
A short statement of applicability which will accompany any results computed using it. A developer can use the disclaimer to inform users of the intended use of this KIM Item.
According to the developer Giovanni Bonny (as reported by the NIST IPRP), this potential was not stiffened and cannot be used in its present form for collision cascades.
Content Origin NIST IPRP (https://www.ctcms.nist.gov/potentials/Fe.html#Fe-W)
Contributor tadmor
Maintainer tadmor
Author Ellad Tadmor
Publication Year 2018
Source Citations
A citation to primary published work(s) that describe this KIM Item.

Bonny G, et al. (2013) On the mobility of vacancy clusters in reduced activation steels: an atomistic study in the Fe–Cr–W model alloy. Journal of Physics: Condensed Matter 25(31):315401. doi:10.1088/0953-8984/25/31/315401

Item Citation Click here to download a citation in BibTeX format.
Short KIM ID
The unique KIM identifier code.
MO_737567242631_000
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
EAM_Dynamo_BonnyCastinBullens_2013_FeW__MO_737567242631_000
DOI 10.25950/e7fa524a
https://doi.org/10.25950/e7fa524a
https://search.datacite.org/works/10.25950/e7fa524a
KIM Item Type
Specifies whether this is a Stand-alone Model (software implementation of an interatomic model); Parameterized Model (parameter file to be read in by a Model Driver); Model Driver (software implementation of an interatomic model that reads in parameters).
Parameterized Model using Model Driver EAM_Dynamo__MD_120291908751_005
DriverEAM_Dynamo__MD_120291908751_005
KIM API Version2.0

Verification Check Dashboard

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-species-supported-as-stated mandatory
The model supports all species it claims to support; see full description.
Results Files
P vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
P vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
B vc-forces-numerical-derivative consistency
Forces computed by the model agree with numerical derivatives of the energy; see full description.
Results Files
F vc-dimer-continuity-c1 informational
The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.
Results Files
P vc-objectivity informational
Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.
Results Files
P vc-inversion-symmetry informational
Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.
Results Files
P vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files
P vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files

Visualizers (in-page)


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Fe
Species: W

Click on any thumbnail to get a full size image.



Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

Species: Fe
Species: W

Click on any thumbnail to get a full size image.



Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Fe
Species: W

Click on any thumbnail to get a full size image.



FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Fe
Species: W

Click on any thumbnail to get a full size image.



SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Fe
Species: W

Click on any thumbnail to get a full size image.



Cubic Crystal Basic Properties Table

Species: Fe

Species: W



Tests

CohesiveEnergyVsLatticeConstant__TD_554653289799_002
This Test Driver uses LAMMPS to compute the cohesive energy of a given monoatomic cubic lattice (fcc, bcc, sc, or diamond) at a variety of lattice spacings. The lattice spacings range from a_min (=a_min_frac*a_0) to a_max (=a_max_frac*a_0) where a_0, a_min_frac, and a_max_frac are read from stdin (a_0 is typically approximately equal to the equilibrium lattice constant). The precise scaling and number of lattice spacings sampled between a_min and a_0 (a_0 and a_max) is specified by two additional parameters passed from stdin: N_lower and samplespacing_lower (N_upper and samplespacing_upper). Please see README.txt for further details.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
CohesiveEnergyVsLatticeConstant_bcc_Fe__TE_509164219708_002 view 2310
CohesiveEnergyVsLatticeConstant_bcc_W__TE_726637192481_002 view 3144
CohesiveEnergyVsLatticeConstant_diamond_Fe__TE_747158614799_002 view 2566
CohesiveEnergyVsLatticeConstant_diamond_W__TE_197093630507_002 view 2086
CohesiveEnergyVsLatticeConstant_fcc_Fe__TE_431563044903_002 view 2631
CohesiveEnergyVsLatticeConstant_fcc_W__TE_413870048308_002 view 2984
CohesiveEnergyVsLatticeConstant_sc_Fe__TE_418244980127_002 view 2856
CohesiveEnergyVsLatticeConstant_sc_W__TE_734478667511_002 view 2310
ElasticConstantsCubic__TD_011862047401_004
Computes the cubic elastic constants for some common crystal types (fcc, bcc, sc) by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
ElasticConstantsCubic_bcc_Fe__TE_740506315238_004 view 1797
ElasticConstantsCubic_bcc_W__TE_866278965431_004 view 2310
ElasticConstantsCubic_fcc_Fe__TE_943136713920_004 view 1508
ElasticConstantsCubic_fcc_W__TE_107628130267_004 view 1733
ElasticConstantsCubic_sc_Fe__TE_828391579283_004 view 1540
ElasticConstantsCubic_sc_W__TE_403249981369_004 view 1636
ElasticConstantsHexagonal__TD_612503193866_003
Computes the elastic constants for hcp crystals by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
ElasticConstantsHexagonal_hcp_Fe__TE_092069407629_003 view 3702
ElasticConstantsHexagonal_hcp_W__TE_270877935600_003 view 2859
LatticeConstantCubicEnergy__TD_475411767977_006
Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
LatticeConstantCubicEnergy_bcc_Fe__TE_727622321684_006 view 1219
LatticeConstantCubicEnergy_bcc_W__TE_155104699590_006 view 866
LatticeConstantCubicEnergy_diamond_Fe__TE_099190649546_006 view 834
LatticeConstantCubicEnergy_diamond_W__TE_167956834767_006 view 1283
LatticeConstantCubicEnergy_fcc_Fe__TE_342002765394_006 view 995
LatticeConstantCubicEnergy_fcc_W__TE_461994964744_006 view 1123
LatticeConstantCubicEnergy_sc_Fe__TE_839734634070_006 view 1027
LatticeConstantCubicEnergy_sc_W__TE_482767540184_006 view 738
LatticeConstantHexagonalEnergy__TD_942334626465_004
Calculates lattice constant of hexagonal bulk structures at zero temperature and pressure by using simplex minimization to minimize the potential energy.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
LatticeConstantHexagonalEnergy_hcp_Fe__TE_035924073553_004 view 13452
LatticeConstantHexagonalEnergy_hcp_W__TE_960710713318_004 view 9860
SurfaceEnergyCubicCrystalBrokenBondFit__TD_955413365818_003
Calculates the surface energy of several high symmetry surfaces and produces a broken-bond model fit. In latex form, the fit equations are given by:

E_{FCC} (\vec{n}) = p_1 (4 \left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\right)) + p_2 (8 \left( |x| + |y| + |z|\right)) + p_3 (2 ( |x+ 2y + z| + |x+2y-z| + |x-2y + z| + |x-2y-z| + |2x+y+z| + |2x+y-z| +|2x-y+z| +|2x-y-z| +|x+y+2z| +|x+y-2z| +|x-y+2z| +|x-y-2z| ) + c

E_{BCC} (\vec{n}) = p_1 (6 \left( | x+y+z| + |x+y-z| + |-x+y-z| + |x-y+z| \right)) + p_2 (8 \left( |x| + |y| + |z|\right)) + p_3 (4 \left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\right)) +c.

In Python, these two fits take the following form:

def BrokenBondFCC(params, index):

import numpy
x, y, z = index
x = x / numpy.sqrt(x**2.+y**2.+z**2.)
y = y / numpy.sqrt(x**2.+y**2.+z**2.)
z = z / numpy.sqrt(x**2.+y**2.+z**2.)

return params[0]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*(abs(x+2*y+z) + abs(x+2*y-z) +abs(x-2*y+z) +abs(x-2*y-z) + abs(2*x+y+z) +abs(2*x+y-z) +abs(2*x-y+z) +abs(2*x-y-z) + abs(x+y+2*z) +abs(x+y-2*z) +abs(x-y+2*z) +abs(x-y-2*z))+params[3]

def BrokenBondBCC(params, x, y, z):


import numpy
x, y, z = index
x = x / numpy.sqrt(x**2.+y**2.+z**2.)
y = y / numpy.sqrt(x**2.+y**2.+z**2.)
z = z / numpy.sqrt(x**2.+y**2.+z**2.)

return params[0]*6*(abs(x+y+z) + abs(x-y-z) + abs(x-y+z) + abs(x+y-z)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[3]
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
SurfaceEnergyCubicCrystalBrokenBondFit_bcc_Fe__TE_493894422725_003 view 13989
SurfaceEnergyCubicCrystalBrokenBondFit_bcc_W__TE_378149060769_003 view 15818


Errors

  • No Errors associated with this Model




Download Dependency

This Model requires a Model Driver. Archives for the Model Driver EAM_Dynamo__MD_120291908751_005 appear below.


EAM_Dynamo__MD_120291908751_005.txz Tar+XZ Linux and OS X archive
EAM_Dynamo__MD_120291908751_005.zip Zip Windows archive

Wiki

Wiki is ready to accept new content.

Login to edit Wiki content