Jump to: Tests | Visualizers | Files | Wiki

EAM_Dynamo_HepburnAckland_2008_FeC__MO_143977152728_005

Interatomic potential for Carbon (C), Iron (Fe).
Use this Potential

Title
A single sentence description.
EAM potential (LAMMPS cubic hermite tabulation) for the FeC system developed by Ackland and Hepburn (2008) v005
Description
A short description of the Model describing its key features including for example: type of model (pair potential, 3-body potential, EAM, etc.), modeled species (Ac, Ag, ..., Zr), intended purpose, origin, and so on.
Potential model for iron-carbon incorporation covalent bonding effects. At time of publication this was the only potential which binds properly to vacancies and NOT to interstitials. This gives it the right energetics in a dislocation core, and at a surface. Good clustering of C behavior and fct martensite. Solution energy -7.13eV, migration energy 0.89eV (i.e. diffuses more slowly than vacancies). Compatible with Ackland-Mendelev '04 iron.
Species
The supported atomic species.
C, Fe
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
Does not describe cementite. Does not describe Carbon.
Content Origin http://www.ctcms.nist.gov/potentials/C.html
Contributor gjackland
Maintainer gjackland
Creator Graeme J. Ackland
Publication Year 2018
Item Citation

This Model originally published in [1] is archived in OpenKIM [2-5].

[1] Hepburn DJ, Ackland GJ. Metallic-covalent interatomic potential for carbon in iron. Physical Review B. 2008Oct;78(16):165115. doi:10.1103/PhysRevB.78.165115 — (Primary Source) A primary source is a reference directly related to the item documenting its development, as opposed to other sources that are provided as background information.

[2] EAM potential (LAMMPS cubic hermite tabulation) for the FeC system developed by Ackland and Hepburn (2008) v005. OpenKIM; 2018. doi:10.25950/a38f2843

[3] EAM Model Driver for tabulated potentials with cubic Hermite spline interpolation as used in LAMMPS v005. OpenKIM; 2018. doi:10.25950/68defa36

[4] Tadmor EB, Elliott RS, Sethna JP, Miller RE, Becker CA. The potential of atomistic simulations and the Knowledgebase of Interatomic Models. JOM. 2011;63(7):17. doi:10.1007/s11837-011-0102-6

[5] Elliott RS, Tadmor EB. Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API). OpenKIM; 2011. doi:10.25950/ff8f563a

Click here to download the above citation in BibTeX format.
Funding Not available
Short KIM ID
The unique KIM identifier code.
MO_143977152728_005
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
EAM_Dynamo_HepburnAckland_2008_FeC__MO_143977152728_005
DOI 10.25950/a38f2843
https://doi.org/10.25950/a38f2843
https://search.datacite.org/works/10.25950/a38f2843
KIM Item Type
Specifies whether this is a Portable Model (software implementation of an interatomic model); Portable Model with parameter file (parameter file to be read in by a Model Driver); Model Driver (software implementation of an interatomic model that reads in parameters).
Portable Model using Model Driver EAM_Dynamo__MD_120291908751_005
DriverEAM_Dynamo__MD_120291908751_005
KIM API Version2.0
Potential Type eam
Programming Language(s)
The programming languages used in the code and the percentage of the code written in each one. "N/A" means "not applicable" and refers to model parameterizations which only include parameter tables and have no programming language.
N/A
Previous Version EAM_Dynamo_HepburnAckland_2008_FeC__MO_143977152728_004

Verification Check Dashboard

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-species-supported-as-stated mandatory
The model supports all species it claims to support; see full description.
Results Files
P vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
P vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
B vc-forces-numerical-derivative consistency
Forces computed by the model agree with numerical derivatives of the energy; see full description.
Results Files
F vc-dimer-continuity-c1 informational
The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.
Results Files
P vc-objectivity informational
Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.
Results Files
P vc-inversion-symmetry informational
Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.
Results Files
P vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files
P vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files
P vc-unit-conversion mandatory
The model is able to correctly convert its energy and/or forces to different unit sets; see full description.
Results Files

Visualizers (in-page)


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: C
Species: Fe


Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

Species: Fe
Species: C


Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Fe
Species: C


FCC Elastic Constants

This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: C
Species: Fe


FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: C
Species: Fe


FCC Stacking Fault Energies

This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Surface Energies

This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Fe


Cubic Crystal Basic Properties Table

Species: C

Species: Fe



Tests

Disclaimer From Model Developer

Does not describe cementite. Does not describe Carbon.



Cohesive energy versus lattice constant curve for monoatomic cubic lattices v002

Creators: Daniel S. Karls
Contributor: karls
Publication Year: 2018
DOI: https://doi.org/10.25950/c6746c52

This Test Driver uses LAMMPS to compute the cohesive energy of a given monoatomic cubic lattice (fcc, bcc, sc, or diamond) at a variety of lattice spacings. The lattice spacings range from a_min (=a_min_frac*a_0) to a_max (=a_max_frac*a_0) where a_0, a_min_frac, and a_max_frac are read from stdin (a_0 is typically approximately equal to the equilibrium lattice constant). The precise scaling and number of lattice spacings sampled between a_min and a_0 (a_0 and a_max) is specified by two additional parameters passed from stdin: N_lower and samplespacing_lower (N_upper and samplespacing_upper). Please see README.txt for further details.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Cohesive energy versus lattice constant curve for sc Carbon view 14515


Cohesive energy versus lattice constant curve for monoatomic cubic lattices v003

Creators: Daniel S. Karls
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/64cb38c5

This Test Driver uses LAMMPS to compute the cohesive energy of a given monoatomic cubic lattice (fcc, bcc, sc, or diamond) at a variety of lattice spacings. The lattice spacings range from a_min (=a_min_frac*a_0) to a_max (=a_max_frac*a_0) where a_0, a_min_frac, and a_max_frac are read from stdin (a_0 is typically approximately equal to the equilibrium lattice constant). The precise scaling and number of lattice spacings sampled between a_min and a_0 (a_0 and a_max) is specified by two additional parameters passed from stdin: N_lower and samplespacing_lower (N_upper and samplespacing_upper). Please see README.txt for further details.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Cohesive energy versus lattice constant curve for bcc C v003 view 9565
Cohesive energy versus lattice constant curve for bcc Fe v003 view 9757
Cohesive energy versus lattice constant curve for diamond C v003 view 9277
Cohesive energy versus lattice constant curve for diamond Fe v003 view 9629
Cohesive energy versus lattice constant curve for fcc C v003 view 9533
Cohesive energy versus lattice constant curve for fcc Fe v003 view 9565
Cohesive energy versus lattice constant curve for sc Fe v003 view 9661


Elastic constants for cubic crystals at zero temperature and pressure v004

Creators: Junhao Li
Contributor: jl2922
Publication Year: 2018
DOI: https://doi.org/10.25950/75393d88

Computes the cubic elastic constants for some common crystal types (fcc, bcc, sc) by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for sc C at zero temperature view 3079


Elastic constants for cubic crystals at zero temperature and pressure v006

Creators: Junhao Li and Ellad Tadmor
Contributor: tadmor
Publication Year: 2019
DOI: https://doi.org/10.25950/5853fb8f

Computes the cubic elastic constants for some common crystal types (fcc, bcc, sc, diamond) by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for bcc C at zero temperature v006 view 1727
Elastic constants for bcc Fe at zero temperature v006 view 2047
Elastic constants for fcc C at zero temperature v006 view 1567
Elastic constants for fcc Fe at zero temperature v006 view 1759
Elastic constants for sc Fe at zero temperature v006 view 2079


Elastic constants for hexagonal crystals at zero temperature v003

Creators: Junhao Li
Contributor: jl2922
Publication Year: 2018
DOI: https://doi.org/10.25950/2e4b93d9

Computes the elastic constants for hcp crystals by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for hcp C at zero temperature view 3959


Elastic constants for hexagonal crystals at zero temperature v004

Creators: Junhao Li
Contributor: jl2922
Publication Year: 2019
DOI: https://doi.org/10.25950/d794c746

Computes the elastic constants for hcp crystals by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for hcp Fe at zero temperature v004 view 1846


Relaxed energy as a function of tilt angle for a symmetric tilt grain boundary within a cubic crystal v002

Creators: Brandon Runnels
Contributor: brunnels
Publication Year: 2019
DOI: https://doi.org/10.25950/4723cee7

Computes grain boundary energy for a range of tilt angles given a crystal structure, tilt axis, and material.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Relaxed energy as a function of tilt angle for a 100 symmetric tilt grain boundary in bcc Fe v000 view 2382083
Relaxed energy as a function of tilt angle for a 110 symmetric tilt grain boundary in bcc Fe v000 view 6229751
Relaxed energy as a function of tilt angle for a 111 symmetric tilt grain boundary in bcc Fe v000 view 2688647
Relaxed energy as a function of tilt angle for a 112 symmetric tilt grain boundary in bcc Fe v000 view 10554262
Relaxed energy as a function of tilt angle for a 100 symmetric tilt grain boundary in fcc Fe v000 view 5628654
Relaxed energy as a function of tilt angle for a 110 symmetric tilt grain boundary in fcc Fe v000 view 53953988
Relaxed energy as a function of tilt angle for a 111 symmetric tilt grain boundary in fcc Fe v000 view 29503774
Relaxed energy as a function of tilt angle for a 112 symmetric tilt grain boundary in fcc Fe v000 view 112385754


Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure v005

Creators: Junhao Li
Contributor: jl2922
Publication Year: 2018
DOI: https://doi.org/10.25950/f3eec5a9

Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium zero-temperature lattice constant for sc C view 1649


Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure v007

Creators: Daniel S. Karls and Junhao Li
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/2765e3bf

Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium zero-temperature lattice constant for bcc C v007 view 3231
Equilibrium zero-temperature lattice constant for bcc Fe v007 view 3103
Equilibrium zero-temperature lattice constant for diamond C v007 view 3775
Equilibrium zero-temperature lattice constant for diamond Fe v007 view 5630
Equilibrium zero-temperature lattice constant for fcc C v007 view 5758
Equilibrium zero-temperature lattice constant for fcc Fe v007 view 6110
Equilibrium zero-temperature lattice constant for sc Fe v007 view 3647


Equilibrium lattice constants for hexagonal bulk structures at zero temperature and pressure v004

Creators: Junhao Li
Contributor: jl2922
Publication Year: 2018
DOI: https://doi.org/10.25950/25bcc28b

Calculates lattice constant of hexagonal bulk structures at zero temperature and pressure by using simplex minimization to minimize the potential energy.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium lattice constants for hcp C view 14515


Equilibrium lattice constants for hexagonal bulk structures at zero temperature and pressure v005

Creators: Daniel S. Karls and Junhao Li
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/c339ca32

Calculates lattice constant of hexagonal bulk structures at zero temperature and pressure by using simplex minimization to minimize the potential energy.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium lattice constants for hcp Fe v005 view 31008


Linear thermal expansion coefficient of cubic crystal structures v001

Creators: Mingjian Wen
Contributor: Mwen
Publication Year: 2019
DOI: https://doi.org/10.25950/fc69d82d

This Test Driver uses LAMMPS to compute the linear thermal expansion coefficient at a finite temperature under a given pressure for a cubic lattice (fcc, bcc, sc, diamond) of a single given species.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Linear thermal expansion coefficient of bcc Fe at 293.15 K under a pressure of 0 MPa v001 view 7259488


High-symmetry surface energies in cubic lattices and broken bond model v004

Creators: Matt Bierbaum
Contributor: mattbierbaum
Publication Year: 2019
DOI: https://doi.org/10.25950/6c43a4e6

Calculates the surface energy of several high symmetry surfaces and produces a broken-bond model fit. In latex form, the fit equations are given by:

E_{FCC} (\vec{n}) = p_1 (4 \left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\right)) + p_2 (8 \left( |x| + |y| + |z|\right)) + p_3 (2 ( |x+ 2y + z| + |x+2y-z| + |x-2y + z| + |x-2y-z| + |2x+y+z| + |2x+y-z| +|2x-y+z| +|2x-y-z| +|x+y+2z| +|x+y-2z| +|x-y+2z| +|x-y-2z| ) + c

E_{BCC} (\vec{n}) = p_1 (6 \left( | x+y+z| + |x+y-z| + |-x+y-z| + |x-y+z| \right)) + p_2 (8 \left( |x| + |y| + |z|\right)) + p_3 (4 \left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\right)) +c.

In Python, these two fits take the following form:

def BrokenBondFCC(params, index):

import numpy
x, y, z = index
x = x / numpy.sqrt(x**2.+y**2.+z**2.)
y = y / numpy.sqrt(x**2.+y**2.+z**2.)
z = z / numpy.sqrt(x**2.+y**2.+z**2.)

return params[0]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*(abs(x+2*y+z) + abs(x+2*y-z) +abs(x-2*y+z) +abs(x-2*y-z) + abs(2*x+y+z) +abs(2*x+y-z) +abs(2*x-y+z) +abs(2*x-y-z) + abs(x+y+2*z) +abs(x+y-2*z) +abs(x-y+2*z) +abs(x-y-2*z))+params[3]

def BrokenBondBCC(params, x, y, z):


import numpy
x, y, z = index
x = x / numpy.sqrt(x**2.+y**2.+z**2.)
y = y / numpy.sqrt(x**2.+y**2.+z**2.)
z = z / numpy.sqrt(x**2.+y**2.+z**2.)

return params[0]*6*(abs(x+y+z) + abs(x-y-z) + abs(x-y+z) + abs(x+y-z)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[3]
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Broken-bond fit of high-symmetry surface energies in bcc Fe v004 view 17722





Download Dependency

This Model requires a Model Driver. Archives for the Model Driver EAM_Dynamo__MD_120291908751_005 appear below.


EAM_Dynamo__MD_120291908751_005.txz Tar+XZ Linux and OS X archive
EAM_Dynamo__MD_120291908751_005.zip Zip Windows archive

Wiki


Login to edit Wiki content