Jump to: Tests | Visualizers | Files | Wiki

EAM_Dynamo_Hoyt_Garvin_PbCu__MO_119135752160_004

Interatomic potential for Copper (Cu), Lead (Pb).
Use this Potential

Title
A single sentence description.
Embedded Atom Method parametrization of the Pb-Cu system
Description
A short description of the Model describing its key features including for example: type of model (pair potential, 3-body potential, EAM, etc.), modeled species (Ac, Ag, ..., Zr), intended purpose, origin, and so on.
An Embedded Atom Method (EAM) description of the Cu-Pb binary system using previous EAM descriptions of pure Pb and Cu. The model reproduces fairly well the phase diagram of Cu-Pb including the liquid-liquid miscibility gap.
Species
The supported atomic species.
Cu, Pb
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
None
Content Origin http://www.ctcms.nist.gov/potentials/Pb.html
Contributor jjhoyt
Maintainer jjhoyt
Creator Jeffrey Hoyt
Publication Year 2018
Item Citation Click here to download this citation in BibTeX format.
Funding Not available
Short KIM ID
The unique KIM identifier code.
MO_119135752160_004
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
EAM_Dynamo_Hoyt_Garvin_PbCu__MO_119135752160_004
Citable Link https://openkim.org/cite/MO_119135752160_004
KIM Item Type
Specifies whether this is a Portable Model (software implementation of an interatomic model); Portable Model with parameter file (parameter file to be read in by a Model Driver); Model Driver (software implementation of an interatomic model that reads in parameters).
Portable Model using Model Driver EAM_Dynamo__MD_120291908751_004
DriverEAM_Dynamo__MD_120291908751_004
KIM API Version1.6
Previous Version EAM_Dynamo_Hoyt_Garvin_PbCu__MO_119135752160_003

Verification Check Dashboard

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-species-supported-as-stated mandatory
The model supports all species it claims to support; see full description.
Results Files
P vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
P vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
F vc-forces-numerical-derivative consistency
Forces computed by the model agree with numerical derivatives of the energy; see full description.
Results Files
F vc-dimer-continuity-c1 informational
The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.
Results Files
P vc-objectivity informational
Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.
Results Files
P vc-inversion-symmetry informational
Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.
Results Files
P vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files
P vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files

Visualizers (in-page)


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

(No matching species)

Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Elastic Constants

This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Stacking Fault Energies

This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Surface Energies

This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

Cubic Crystal Basic Properties Table

Species: Cu

Species: Pb



Tests



Cohesive energy versus lattice constant curve for monoatomic cubic lattice

Creators: Daniel Karls
Contributor: karls
Publication Year: 2016
DOI: https://doi.org/

This Test Driver uses LAMMPS to compute the cohesive energy of a given monoatomic cubic
lattice (fcc, bcc, sc, or diamond) at a variety of lattice spacings. The lattice spacings
range from a_min (=a_min_frac*a_0) to a_max (=a_max_frac*a_0) where a_0, a_min_frac, and
a_max_frac are read from stdin (a_0 is typically approximately equal to the equilibrium lattice
constant). The precise scaling and number of lattice spacings sampled between a_min and a_0
(a_0 and a_max) is specified by two additional parameters passed from stdin: N_lower and
samplespacing_lower (N_upper and samplespacing_upper). Please see README.txt for further details.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Cohesive energy versus lattice constant curve for bcc Copper view 1436
Cohesive energy versus lattice constant curve for bcc Lead view 1723
Cohesive energy versus lattice constant curve for diamond Copper view 1364
Cohesive energy versus lattice constant curve for diamond Lead view 1687
Cohesive energy versus lattice constant curve for fcc Copper view 1687
Cohesive energy versus lattice constant curve for fcc Lead view 1723
Cohesive energy versus lattice constant curve for sc Copper view 1471
Cohesive energy versus lattice constant curve for sc Lead view 1723


Elastic constants for cubic crystals at zero temperature

Creators: Junhao Li
Contributor: jl2922
Publication Year: 2017
DOI: https://doi.org/

Measures the cubic elastic constants for some common crystal types (fcc, bcc, sc) by calculating the hessian of the energy density with respect to strain. Error estimate is reported due to the numerical differentiation.

This version fixes the number of repeats in the species key.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for bcc Cu at zero temperature view 1292
Elastic constants for bcc Pb at zero temperature view 1436
Elastic constants for fcc Cu at zero temperature view 1723
Elastic constants for fcc Pb at zero temperature view 1471
Elastic constants for sc Cu at zero temperature view 1436
Elastic constants for sc Pb at zero temperature view 1220


Elastic constants for hexagonal crystals at zero temperature

Creators: Junhao Li
Contributor: jl2922
Publication Year: 2017
DOI: https://doi.org/

Measures the hexagonal elastic constants for hcp structure by calculating the hessian of the energy density with respect to strain. Error estimate is reported due to the numerical differentiation.

This version fixes the number of repeats in the species key and the coordinate of the 2nd atom in the normed basis.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for hcp Cu at zero temperature view 1759
Elastic constants for hcp Pb at zero temperature view 1436


Equilibrium lattice constants for bulk cubic structures

Creators: Junhao Li
Contributor: jl2922
Publication Year: 2018
DOI: https://doi.org/

Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium zero-temperature lattice constant for bcc Cu view 646
Equilibrium zero-temperature lattice constant for bcc Pb view 431
Equilibrium zero-temperature lattice constant for diamond Cu view 646
Equilibrium zero-temperature lattice constant for diamond Pb view 682
Equilibrium zero-temperature lattice constant for fcc Cu view 718
Equilibrium zero-temperature lattice constant for fcc Pb view 718
Equilibrium zero-temperature lattice constant for sc Cu view 646
Equilibrium zero-temperature lattice constant for sc Pb view 610


Equilibrium lattice constants for hexagonal bulk structures

Creators: Junhao Li
Contributor: jl2922
Publication Year: 2017
DOI: https://doi.org/

Calculates lattice constant by minimizing energy function.

This version fixes the output format problems in species and stress, and adds support for PURE and OPBC neighbor lists. The cell used for calculation is switched from a hexagonal one to an orthorhombic one to comply with the requirement of OPBC.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium lattice constants for hcp Cu view 5312
Equilibrium lattice constants for hcp Pb view 7106


Cohesive energy versus shear parameter relation for a cubic crystal

Creators: Jiadi Fan
Contributor: Jiadi
Publication Year: 2016
DOI: https://doi.org/

This test driver is used to test lattice invariance shear in a cubic crystal based on cb-kim code. Initial guess of lattice parameter, shear direction vector, shear plane normal vector, relaxation optional key need to be set as input. The output will be first PK stress, stiffness matrix, cohesive energy, and displacement of shuffle (if relaxation optional key is true)
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Cohesive energy versus <-1 1 0>{1 1 1} shear parameter relation for bcc Cu view 2512
Cohesive energy versus <-1 1 0>{1 1 1} shear parameter relation for fcc Cu view 1794


Linear thermal expansion coefficient of a cubic crystal structure at a given temperature and pressure v000

Creators: Mingjian Wen
Contributor: Mwen
Publication Year: 2016
DOI: https://doi.org/

This Test Driver uses LAMMPS to compute the linear thermal expansion coefficient at a finite temperature under a given pressure for cubic lattice (fcc, bcc, sc, diamond) of a single given species.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Linear thermal expansion coefficient of fcc Cu at room temperature under zero pressure view 12082319
Linear thermal expansion coefficient of fcc Pb at room temperature under zero pressure view 2044309


Phonon dispersion relations for fcc lattices

Creators: Matt Bierbaum
Contributor: mattbierbaum
Publication Year: 2016
DOI: https://doi.org/

Calculates the phonon dispersion relations for fcc lattices and records the results as curves.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Phonon dispersion relations for fcc Cu view 110143
Phonon dispersion relations for fcc Pb view 110789


Stacking and twinning fault energies for FCC crystals

Creators: Subrahmanyam Pattamatta
Contributor: SubrahmanyamPattamatta
Publication Year: 2018
DOI: https://doi.org/

Intrinsic and extrinsic stacking fault energies, unstable stacking fault energy, unstable twinning energy, stacking fault energy as a function of fractional displacement, and gamma surface for a monoatomic FCC lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Stacking and twinning fault energies for fcc Cu view 6906479
Stacking and twinning fault energies for fcc Pb view 3361902


Broken-bond fit of high-symmetry surface energies in cubic crystal lattices

Creators: Matt Bierbaum
Contributor: mattbierbaum
Publication Year: 2017
DOI: https://doi.org/

Calculates the surface energy of several high symmetry surfaces and produces a broken bond model fit. In latex form, the fit equations are given by:

E_{FCC} (\vec{n}) = p_1 (4 \left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\right)) + p_2 (8 \left( |x| + |y| + |z|\right)) + p_3 (2 ( |x+ 2y + z| + |x+2y-z| + |x-2y + z| + |x-2y-z| + |2x+y+z| + |2x+y-z| +|2x-y+z| +|2x-y-z| +|x+y+2z| +|x+y-2z| +|x-y+2z| +|x-y-2z| ) + c

E_{BCC} (\vec{n}) = p_1 (6 \left( | x+y+z| + |x+y-z| + |-x+y-z| + |x-y+z| \right)) + p_2 (8 \left( |x| + |y| + |z|\right)) + p_3 (4 \left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\right)) +c.

In Python, these two fits take the form:
def BrokenBondFCC(params, index):

import numpy
x, y, z = index
x = x / numpy.sqrt(x**2.+y**2.+z**2.)
y = y / numpy.sqrt(x**2.+y**2.+z**2.)
z = z / numpy.sqrt(x**2.+y**2.+z**2.)

return params[0]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*(abs(x+2*y+z) + abs(x+2*y-z) +abs(x-2*y+z) +abs(x-2*y-z) + abs(2*x+y+z) +abs(2*x+y-z) +abs(2*x-y+z) +abs(2*x-y-z) + abs(x+y+2*z) +abs(x+y-2*z) +abs(x-y+2*z) +abs(x-y-2*z))+params[3]

def BrokenBondBCC(params, x, y, z):


import numpy
x, y, z = index
x = x / numpy.sqrt(x**2.+y**2.+z**2.)
y = y / numpy.sqrt(x**2.+y**2.+z**2.)
z = z / numpy.sqrt(x**2.+y**2.+z**2.)

return params[0]*6*(abs(x+y+z) + abs(x-y-z) + abs(x-y+z) + abs(x+y-z)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[3]
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Broken-bond fit of high-symmetry surface energies in fcc Cu view 60365
Broken-bond fit of high-symmetry surface energies in fcc Pb view 56059


Monovacancy formation energy and relaxation volume for cubic and hcp monoatomic crystals

Creators: Junhao Li
Contributor: jl2922
Publication Year: 2018
DOI: https://doi.org/

Computes the monovacancy formation energy and relaxation volume for cubic and hcp monoatomic crystals.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Monovacancy formation energy and relaxation volume for fcc Cu view 303118
Monovacancy formation energy and relaxation volume for fcc Pb view 246055


Vacancy formation and migration energies for cubic and hcp monoatomic crystals

Creators: Junhao Li
Contributor: jl2922
Publication Year: 2018
DOI: https://doi.org/

Computes the monovacancy formation and migration energies for cubic and hcp monoatomic crystals.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Vacancy formation and migration energy for fcc Cu view 228146
Vacancy formation and migration energy for fcc Pb view 405689





Download Dependency

This Model requires a Model Driver. Archives for the Model Driver EAM_Dynamo__MD_120291908751_004 appear below.


EAM_Dynamo__MD_120291908751_004.txz Tar+XZ Linux and OS X archive
EAM_Dynamo__MD_120291908751_004.zip Zip Windows archive

Wiki

Wiki is ready to accept new content.

Login to edit Wiki content