Jump to: Tests | Visualizers | Files | Wiki

EAM_Dynamo_MendelevSordeletKramer_2007_CuZr__MO_120596890176_005

Title
A single sentence description.
Finnis-Sinclair potential (LAMMPS cubic hermite tabulation) for the Cu-Zr system developed by Mendelev, Sordelet and Kramer (2007) v005
Description
A short description of the Model describing its key features including for example: type of model (pair potential, 3-body potential, EAM, etc.), modeled species (Ac, Ag, ..., Zr), intended purpose, origin, and so on.
We propose a method of using atomistic computer simulations to obtain partial pair correlation functions from wide angle diffraction experiments with metallic liquids and their glasses. In this method, a model is first created using a semiempirical interatomic potential and then an additional atomic force is added to improve the agreement with experimental diffraction data. To illustrate this approach, the structure of an amorphous Cu64.5Zr35.5 alloy is highlighted, where we present the results for the semiempirical many-body potential and fitting to x-ray diffraction data. While only x-ray diffraction data were used in the present work, the method can be easily adapted to the case when there are also data from neutron diffraction or even in combination. Moreover, this method can be employed in the case of multicomponent systems when the data of several diffraction experiments can be combined. Note that the version published in [M.I. Mendelev, M.J. Kramer, R.T. Ott, D.J. Sordelet, D. Yagodin and P. Popel, Phil. Mag. 89, 967-987 (2009).] is better for simulation of liquid/glass structure.
Species
The supported atomic species.
Cu, Zr
Content Origin http://www.ctcms.nist.gov/potentials/Cu.html
Contributor mendelev
Maintainer mendelev
Author Mikhail I. Mendelev
Publication Year 2018
Source Citations
A citation to primary published work(s) that describe this KIM Item.

Mendelev MI, Sordelet DJ, Kramer MJ (2007) Using atomistic computer simulations to analyze x-ray diffraction data from metallic glasses. Journal of Applied Physics 102(4):043501. doi:10.1063/1.2769157

Item Citation Click here to download a citation in BibTeX format.
Short KIM ID
The unique KIM identifier code.
MO_120596890176_005
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
EAM_Dynamo_MendelevSordeletKramer_2007_CuZr__MO_120596890176_005
DOI 10.25950/8556dbaf
https://doi.org/10.25950/8556dbaf
https://search.datacite.org/works/10.25950/8556dbaf
KIM Item Type
Specifies whether this is a Stand-alone Model (software implementation of an interatomic model); Parameterized Model (parameter file to be read in by a Model Driver); Model Driver (software implementation of an interatomic model that reads in parameters).
Parameterized Model using Model Driver EAM_Dynamo__MD_120291908751_005
DriverEAM_Dynamo__MD_120291908751_005
KIM API Version2.0
Programming Language(s)
The programming languages used in the code and the percentage of the code written in each one. "N/A" means "not applicable" and refers to model parameterizations which only include parameter tables and have no programming language.
N/A
Previous Version EAM_Dynamo_MendelevSordeletKramer_2007_CuZr__MO_120596890176_004

Verification Check Dashboard

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-species-supported-as-stated mandatory
The model supports all species it claims to support; see full description.
Results Files
P vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
P vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
B vc-forces-numerical-derivative consistency
Forces computed by the model agree with numerical derivatives of the energy; see full description.
Results Files
P vc-dimer-continuity-c1 informational
The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.
Results Files
P vc-objectivity informational
Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.
Results Files
P vc-inversion-symmetry informational
Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.
Results Files
P vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files
P vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files

Visualizers (in-page)


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Cu
Species: Zr

Click on any thumbnail to get a full size image.



Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

Species: Cu
Species: Zr

Click on any thumbnail to get a full size image.



Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Cu
Species: Zr

Click on any thumbnail to get a full size image.



FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Cu
Species: Zr

Click on any thumbnail to get a full size image.



SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Cu
Species: Zr

Click on any thumbnail to get a full size image.



Cubic Crystal Basic Properties Table

Species: Cu

Species: Zr



Tests

CohesiveEnergyVsLatticeConstant__TD_554653289799_002
This Test Driver uses LAMMPS to compute the cohesive energy of a given monoatomic cubic lattice (fcc, bcc, sc, or diamond) at a variety of lattice spacings. The lattice spacings range from a_min (=a_min_frac*a_0) to a_max (=a_max_frac*a_0) where a_0, a_min_frac, and a_max_frac are read from stdin (a_0 is typically approximately equal to the equilibrium lattice constant). The precise scaling and number of lattice spacings sampled between a_min and a_0 (a_0 and a_max) is specified by two additional parameters passed from stdin: N_lower and samplespacing_lower (N_upper and samplespacing_upper). Please see README.txt for further details.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
CohesiveEnergyVsLatticeConstant_bcc_Cu__TE_864632638496_002 view 4472
CohesiveEnergyVsLatticeConstant_bcc_Zr__TE_783403151694_002 view 4105
CohesiveEnergyVsLatticeConstant_diamond_Cu__TE_596332570306_002 view 4105
CohesiveEnergyVsLatticeConstant_diamond_Zr__TE_742267498137_002 view 3629
CohesiveEnergyVsLatticeConstant_fcc_Cu__TE_311348891940_002 view 5241
CohesiveEnergyVsLatticeConstant_fcc_Zr__TE_241660333240_002 view 5131
CohesiveEnergyVsLatticeConstant_sc_Cu__TE_767437873249_002 view 5058
CohesiveEnergyVsLatticeConstant_sc_Zr__TE_943773936272_002 view 5021
ElasticConstantsCubic__TD_011862047401_004
Computes the cubic elastic constants for some common crystal types (fcc, bcc, sc) by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
ElasticConstantsCubic_bcc_Cu__TE_091603841600_004 view 4142
ElasticConstantsCubic_bcc_Zr__TE_286034503723_004 view 3555
ElasticConstantsCubic_fcc_Cu__TE_188557531340_004 view 5681
ElasticConstantsCubic_fcc_Zr__TE_026250508553_004 view 4655
ElasticConstantsCubic_sc_Cu__TE_319353354686_004 view 3739
ElasticConstantsCubic_sc_Zr__TE_103738020637_004 view 3885
ElasticConstantsHexagonal__TD_612503193866_003
Computes the elastic constants for hcp crystals by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
ElasticConstantsHexagonal_hcp_Cu__TE_198002759922_003 view 4582
LatticeConstantCubicEnergy__TD_475411767977_005
Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
LatticeConstantCubicEnergy_bcc_Cu__TE_873531926707_005 view 1576
LatticeConstantCubicEnergy_bcc_Zr__TE_819253466839_005 view 1356
LatticeConstantCubicEnergy_diamond_Cu__TE_939141232476_005 view 2053
LatticeConstantCubicEnergy_diamond_Zr__TE_184605903050_005 view 1503
LatticeConstantCubicEnergy_fcc_Cu__TE_387272513402_005 view 2126
LatticeConstantCubicEnergy_fcc_Zr__TE_010442444476_005 view 1796
LatticeConstantCubicEnergy_sc_Cu__TE_904717264736_005 view 1649
LatticeConstantCubicEnergy_sc_Zr__TE_107850120912_005 view 1649
LatticeConstantHexagonalEnergy__TD_942334626465_004
Calculates lattice constant of hexagonal bulk structures at zero temperature and pressure by using simplex minimization to minimize the potential energy.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
LatticeConstantHexagonalEnergy_hcp_Cu__TE_344176839725_004 view 27160
PhononDispersionCurve__TD_530195868545_003
Calculates the phonon dispersion relations for fcc lattices and records the results as curves.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
PhononDispersionCurve_fcc_Cu__TE_575177044018_003 view 135213
StackingFaultFccCrystal__TD_228501831190_001
Intrinsic and extrinsic stacking fault energies, unstable stacking fault energy, unstable twinning energy, stacking fault energy as a function of fractional displacement, and gamma surface for a monoatomic FCC lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
StackingFaultFccCrystal_Cu_0bar__TE_090810770014_001 view 17029717
SurfaceEnergyCubicCrystalBrokenBondFit__TD_955413365818_003
Calculates the surface energy of several high symmetry surfaces and produces a broken-bond model fit. In latex form, the fit equations are given by:

E_{FCC} (\vec{n}) = p_1 (4 \left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\right)) + p_2 (8 \left( |x| + |y| + |z|\right)) + p_3 (2 ( |x+ 2y + z| + |x+2y-z| + |x-2y + z| + |x-2y-z| + |2x+y+z| + |2x+y-z| +|2x-y+z| +|2x-y-z| +|x+y+2z| +|x+y-2z| +|x-y+2z| +|x-y-2z| ) + c

E_{BCC} (\vec{n}) = p_1 (6 \left( | x+y+z| + |x+y-z| + |-x+y-z| + |x-y+z| \right)) + p_2 (8 \left( |x| + |y| + |z|\right)) + p_3 (4 \left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\right)) +c.

In Python, these two fits take the following form:

def BrokenBondFCC(params, index):

import numpy
x, y, z = index
x = x / numpy.sqrt(x**2.+y**2.+z**2.)
y = y / numpy.sqrt(x**2.+y**2.+z**2.)
z = z / numpy.sqrt(x**2.+y**2.+z**2.)

return params[0]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*(abs(x+2*y+z) + abs(x+2*y-z) +abs(x-2*y+z) +abs(x-2*y-z) + abs(2*x+y+z) +abs(2*x+y-z) +abs(2*x-y+z) +abs(2*x-y-z) + abs(x+y+2*z) +abs(x+y-2*z) +abs(x-y+2*z) +abs(x-y-2*z))+params[3]

def BrokenBondBCC(params, x, y, z):


import numpy
x, y, z = index
x = x / numpy.sqrt(x**2.+y**2.+z**2.)
y = y / numpy.sqrt(x**2.+y**2.+z**2.)
z = z / numpy.sqrt(x**2.+y**2.+z**2.)

return params[0]*6*(abs(x+y+z) + abs(x-y-z) + abs(x-y+z) + abs(x+y-z)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[3]
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
SurfaceEnergyCubicCrystalBrokenBondFit_fcc_Cu__TE_689904280697_003 view 30519





Download Dependency

This Model requires a Model Driver. Archives for the Model Driver EAM_Dynamo__MD_120291908751_005 appear below.


EAM_Dynamo__MD_120291908751_005.txz Tar+XZ Linux and OS X archive
EAM_Dynamo__MD_120291908751_005.zip Zip Windows archive

Wiki

Wiki is ready to accept new content.

Login to edit Wiki content