Jump to: Tests | Visualizers | Files | Wiki

EAM_Dynamo_Sturgeon_Laird_Al__MO_120808805541_002

Interatomic potential for Aluminum (Al).
Use this Potential

Title
A single sentence description.
Melting-point optimized EAM potential for Al
Description
A short description of the Model describing its key features including for example: type of model (pair potential, 3-body potential, EAM, etc.), modeled species (Ac, Ag, ..., Zr), intended purpose, origin, and so on.
This EAM model for Al is based on the model developed by Mei-Davenport, which we have optimized to give the correct experimental melting temperature
Species
The supported atomic species.
Al
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
This model was developed as a prototype case for the Gibbs-Duhem protocol for optimizing melting points. As such, the melting point was the primary metric for its development. We have shown that the modifications to the original Mei-Davenport potential that we used to optimize T_m did not change the quality of the potential with respect to elastic constants, density, etc., but no systematic study of other properties was performed.
Contributor Ryan S. Elliott
Maintainer Ryan S. Elliott
Published on KIM 2016
How to Cite Click here to download this citation in BibTeX format.
Funding Not available
Short KIM ID
The unique KIM identifier code.
MO_120808805541_002
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
EAM_Dynamo_Sturgeon_Laird_Al__MO_120808805541_002
Citable Link https://openkim.org/cite/MO_120808805541_002
KIM Item Type
Specifies whether this is a Portable Model (software implementation of an interatomic model); Portable Model with parameter file (parameter file to be read in by a Model Driver); Model Driver (software implementation of an interatomic model that reads in parameters).
Portable Model using Model Driver EAM_Dynamo__MD_120291908751_002
DriverEAM_Dynamo__MD_120291908751_002
KIM API Version1.6
Programming Language(s)
The programming languages used in the code and the percentage of the code written in each one. "N/A" means "not applicable" and refers to model parameterizations which only include parameter tables and have no programming language.
N/A
Previous Version EAM_Dynamo_Sturgeon_Laird_Al__MO_120808805541_001


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

(No matching species)

Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

Dislocation Core Energies

This graph shows the dislocation core energy of a cubic crystal at zero temperature and pressure for a specific set of dislocation core cutoff radii. After obtaining the total energy of the system from conjugate gradient minimizations, non-singular, isotropic and anisotropic elasticity are applied to obtain the dislocation core energy for each of these supercells with different dipole distances. Graphs are generated for each species supported by the model.

(No matching species)

FCC Elastic Constants

This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Stacking Fault Energies

This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Surface Energies

This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

Cubic Crystal Basic Properties Table

Species: Al



Disclaimer From Model Developer

This model was developed as a prototype case for the Gibbs-Duhem protocol for optimizing melting points. As such, the melting point was the primary metric for its development. We have shown that the modifications to the original Mei-Davenport potential that we used to optimize T_m did not change the quality of the potential with respect to elastic constants, density, etc., but no systematic study of other properties was performed.

  • No Tests associated with this Model
  • Tests are paired to Models through Test Results



  • No Errors associated with this Model




This Model requires a Model Driver. Archives for the Model Driver EAM_Dynamo__MD_120291908751_002 appear below.


EAM_Dynamo__MD_120291908751_002.txz Tar+XZ Linux and OS X archive
EAM_Dynamo__MD_120291908751_002.zip Zip Windows archive

Login to edit Wiki content




Wiki Contributors
2016-08-23T22:39:34 karls