Jump to: Tests | Visualizers | Files | Wiki

EAM_Dynamo_ZhouJohnsonWadley_2004NISTretabulation_Mg__MO_894868634445_000

Interatomic potential for Magnesium (Mg).
Use this Potential

Title
A single sentence description.
EAM potential (LAMMPS cubic hermite tabulation) for Mg developed by Zhou, Johnson, and Wadley (2004); NIST retabulation v000
Description
A short description of the Model describing its key features including for example: type of model (pair potential, 3-body potential, EAM, etc.), modeled species (Ac, Ag, ..., Zr), intended purpose, origin, and so on.
An EAM potential for Al developed by Zhou, Johnson, and Wadley (2004). This is a member of a potential database including 16 elements and their combinations. The references for the potential database are given below. The parameters in this model were generated by Lucas Hale (NIST) to address spurious fluctuations in the tabulated functions in the original potential.
Species
The supported atomic species.
Mg
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
None
Content Origin NIST IPRP (https://www.ctcms.nist.gov/potentials/Mg.html)
Contributor Ellad B. Tadmor
Maintainer Ellad B. Tadmor
Developer Xiaowang Zhou
R. A. Johnson
Wadley, H. N. G.
Larson D. J.
Tabat, N.
Cerezo, A.
Petford-Long, A.K.
Smith, G.D.W.
Clifton, P.H.
Martens, R.L.
Kelly, T.F.
Published on KIM 2018
How to Cite

This Model originally published in [1-2] is archived in OpenKIM [3-6].

[1] Zhou XW, Wadley HNG, Johnson RA, Larson DJ, Tabat N, Cerezo A, et al. Atomic scale structure of sputtered metal multilayers. Acta Materialia. 2001;49(19):4005–15. doi:10.1016/S1359-6454(01)00287-7 — (Primary Source) A primary source is a reference directly related to the item documenting its development, as opposed to other sources that are provided as background information.

[2] Zhou XW, Johnson RA, Wadley HNG. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys Rev B. 2004;69(14):144113. doi:10.1103/PhysRevB.69.144113 — (Primary Source) A primary source is a reference directly related to the item documenting its development, as opposed to other sources that are provided as background information.

[3] Zhou X, Johnson RA, Wadley HNG, J. LD, Tabat N, Cerezo A, et al. EAM potential (LAMMPS cubic hermite tabulation) for Mg developed by Zhou, Johnson, and Wadley (2004); NIST retabulation v000. OpenKIM; 2018. doi:10.25950/328c4ce6

[4] Foiles SM, Baskes MI, Daw MS, Plimpton SJ. EAM Model Driver for tabulated potentials with cubic Hermite spline interpolation as used in LAMMPS v005. OpenKIM; 2018. doi:10.25950/68defa36

[5] Tadmor EB, Elliott RS, Sethna JP, Miller RE, Becker CA. The potential of atomistic simulations and the Knowledgebase of Interatomic Models. JOM. 2011;63(7):17. doi:10.1007/s11837-011-0102-6

[6] Elliott RS, Tadmor EB. Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API). OpenKIM; 2011. doi:10.25950/ff8f563a

Click here to download the above citation in BibTeX format.
Citations

This panel presents information regarding the papers that have cited the interatomic potential (IP) whose page you are on.

The OpenKIM machine learning based Deep Citation framework is used to determine whether the citing article actually used the IP in computations (denoted by "USED") or only provides it as a background citation (denoted by "NOT USED"). For more details on Deep Citation and how to work with this panel, click the documentation link at the top of the panel.

The word cloud to the right is generated from the abstracts of IP principle source(s) (given below in "How to Cite") and the citing articles that were determined to have used the IP in order to provide users with a quick sense of the types of physical phenomena to which this IP is applied.

The bar chart shows the number of articles that cited the IP per year. Each bar is divided into green (articles that USED the IP) and blue (articles that did NOT USE the IP).

Users are encouraged to correct Deep Citation errors in determination by clicking the speech icon next to a citing article and providing updated information. This will be integrated into the next Deep Citation learning cycle, which occurs on a regular basis.

OpenKIM acknowledges the support of the Allen Institute for AI through the Semantic Scholar project for providing citation information and full text of articles when available, which are used to train the Deep Citation ML algorithm.

This panel provides information on past usage of this interatomic potential (IP) powered by the OpenKIM Deep Citation framework. The word cloud indicates typical applications of the potential. The bar chart shows citations per year of this IP (bars are divided into articles that used the IP (green) and those that did not (blue)). The complete list of articles that cited this IP is provided below along with the Deep Citation determination on usage. See the Deep Citation documentation for more information.

Help us to determine which of the papers that cite this potential actually used it to perform calculations. If you know, click the  .