Jump to: Tests | Visualizers | Files | Wiki

EMT_Asap_Standard_JacobsenStoltzeNorskov_1996_Ag__MO_303974873468_000

Interatomic potential for Silver (Ag).
Use this Potential

Title
A single sentence description.
EMT potential for Ag developed by Jacobsen, Stoltze, and Norskov (1996) v000
Description
A short description of the Model describing its key features including for example: type of model (pair potential, 3-body potential, EAM, etc.), modeled species (Ac, Ag, ..., Zr), intended purpose, origin, and so on.
Effective Medium Theory (EMT) model based on the EMT implementation in ASAP (https://wiki.fysik.dtu.dk/asap).

Effective Medium Theory is a many-body potential of the same class as Embedded Atom Method, Finnis-Sinclair etc. The main term in the energy per atom is the local density of atoms.

The functional form implemented here is that of Ref. 1. The principles behind EMT are described in Refs. 2 and 3 (with 2 being the more detailed and 3 being the most pedagogical). Be aware that the functional form and even some of the principles have changed since refs 2 and 3. EMT can be considered the last step of a series of approximations starting with Density Functional Theory; see Ref 4.

This model implements the "official" parametrization as published in Ref. 1.

This parametrization is appropriate for single-element simulations of silver (Ag). For alloy simulations, please use the alloy parametrization EMT_Asap_Standard_JacobsenStoltzeNorskov_1996_AlAgAuCuNiPdPt, which uses a slightly larger cutoff to accomodate for all the elements, at the price of changing the properties of the individual elements marginally.

These files are based on Asap version 3.11.4.


REFERENCES:

[1] Jacobsen, K. W., Stoltze, P., & Nørskov, J.: "A semi-empirical effective medium theory for metals and alloys". Surf. Sci. 366, 394–402 (1996).

[2] Jacobsen, K. W., Nørskov, J., & Puska, M.: "Interatomic interactions in the effective-medium theory". Phys. Rev. B 35, 7423–7442 (1987).

[3] Jacobsen, K. W.: "Bonding in Metallic Systems: An Effective-Medium Approach". Comments Cond. Mat. Phys. 14, 129-161 (1988).

[4] Chetty, N., Stokbro, K., Jacobsen, K. W., & Nørskov, J.: "Ab initio potential for solids". Phys. Rev. B 46, 3798–3809 (1992).
Species
The supported atomic species.
Ag
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
None
Content Origin https://gitlab.com/asap/asap
Contributor Jakob Schiøtz
Maintainer Jakob Schiøtz
Published on KIM 2019
How to Cite Click here to download this citation in BibTeX format.
Funding Not available
Short KIM ID
The unique KIM identifier code.
MO_303974873468_000
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
EMT_Asap_Standard_JacobsenStoltzeNorskov_1996_Ag__MO_303974873468_000
DOI 10.25950/6b92e9a2
https://doi.org/10.25950/6b92e9a2
https://commons.datacite.org/doi.org/10.25950/6b92e9a2
KIM Item Type
Specifies whether this is a Portable Model (software implementation of an interatomic model); Portable Model with parameter file (parameter file to be read in by a Model Driver); Model Driver (software implementation of an interatomic model that reads in parameters).
Portable Model using Model Driver EMT_Asap__MD_128315414717_003
DriverEMT_Asap__MD_128315414717_003
KIM API Version2.0

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-species-supported-as-stated mandatory
The model supports all species it claims to support; see full description.
Results Files
P vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
P vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
A vc-forces-numerical-derivative consistency
Forces computed by the model agree with numerical derivatives of the energy; see full description.
Results Files
F vc-dimer-continuity-c1 informational
The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.
Results Files
P vc-objectivity informational
Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.
Results Files
P vc-inversion-symmetry informational
Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.
Results Files
F vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files
P vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

(No matching species)

Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

Dislocation Core Energies

This graph shows the dislocation core energy of a cubic crystal at zero temperature and pressure for a specific set of dislocation core cutoff radii. After obtaining the total energy of the system from conjugate gradient minimizations, non-singular, isotropic and anisotropic elasticity are applied to obtain the dislocation core energy for each of these supercells with different dipole distances. Graphs are generated for each species supported by the model.

(No matching species)

FCC Elastic Constants

This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Stacking Fault Energies

This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Surface Energies

This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

Cubic Crystal Basic Properties Table

Species: Ag





Elastic constants for cubic crystals at zero temperature and pressure v004

Creators: Junhao Li
Contributor: jl2922
Publication Year: 2018
DOI: https://doi.org/10.25950/75393d88

Computes the cubic elastic constants for some common crystal types (fcc, bcc, sc) by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for bcc Ag at zero temperature view 1773
Elastic constants for fcc Ag at zero temperature view 1870
Elastic constants for sc Ag at zero temperature view 2322


Elastic constants for hexagonal crystals at zero temperature v003

Creators: Junhao Li
Contributor: jl2922
Publication Year: 2018
DOI: https://doi.org/10.25950/2e4b93d9

Computes the elastic constants for hcp crystals by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for hcp Ag at zero temperature view 1644


Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure v005

Creators: Junhao Li
Contributor: jl2922
Publication Year: 2018
DOI: https://doi.org/10.25950/f3eec5a9

Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium zero-temperature lattice constant for bcc Ag view 484
Equilibrium zero-temperature lattice constant for diamond Ag view 742
Equilibrium zero-temperature lattice constant for fcc Ag view 774
Equilibrium zero-temperature lattice constant for sc Ag view 1000


Equilibrium lattice constants for hexagonal bulk structures at zero temperature and pressure v004

Creators: Junhao Li
Contributor: jl2922
Publication Year: 2018
DOI: https://doi.org/10.25950/25bcc28b

Calculates lattice constant of hexagonal bulk structures at zero temperature and pressure by using simplex minimization to minimize the potential energy.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium lattice constants for hcp Ag view 5546


Phonon dispersion relations for an fcc lattice v003

Creators: Matt Bierbaum
Contributor: mattbierbaum
Publication Year: 2018
DOI: https://doi.org/10.25950/e272ebaf

Calculates the phonon dispersion relations for fcc lattices and records the results as curves.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Phonon dispersion relations for fcc Ag view 74677


High-symmetry surface energies in cubic lattices and broken bond model v003

Creators: Matt Bierbaum
Contributor: mattbierbaum
Publication Year: 2018
DOI: https://doi.org/10.25950/cb6e3ef2

Calculates the surface energy of several high symmetry surfaces and produces a broken-bond model fit. In latex form, the fit equations are given by:

E_{FCC} (\vec{n}) = p_1 (4 \left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\right)) + p_2 (8 \left( |x| + |y| + |z|\right)) + p_3 (2 ( |x+ 2y + z| + |x+2y-z| + |x-2y + z| + |x-2y-z| + |2x+y+z| + |2x+y-z| +|2x-y+z| +|2x-y-z| +|x+y+2z| +|x+y-2z| +|x-y+2z| +|x-y-2z| ) + c

E_{BCC} (\vec{n}) = p_1 (6 \left( | x+y+z| + |x+y-z| + |-x+y-z| + |x-y+z| \right)) + p_2 (8 \left( |x| + |y| + |z|\right)) + p_3 (4 \left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\right)) +c.

In Python, these two fits take the following form:

def BrokenBondFCC(params, index):

import numpy
x, y, z = index
x = x / numpy.sqrt(x**2.+y**2.+z**2.)
y = y / numpy.sqrt(x**2.+y**2.+z**2.)
z = z / numpy.sqrt(x**2.+y**2.+z**2.)

return params[0]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*(abs(x+2*y+z) + abs(x+2*y-z) +abs(x-2*y+z) +abs(x-2*y-z) + abs(2*x+y+z) +abs(2*x+y-z) +abs(2*x-y+z) +abs(2*x-y-z) + abs(x+y+2*z) +abs(x+y-2*z) +abs(x-y+2*z) +abs(x-y-2*z))+params[3]

def BrokenBondBCC(params, x, y, z):


import numpy
x, y, z = index
x = x / numpy.sqrt(x**2.+y**2.+z**2.)
y = y / numpy.sqrt(x**2.+y**2.+z**2.)
z = z / numpy.sqrt(x**2.+y**2.+z**2.)

return params[0]*6*(abs(x+y+z) + abs(x-y-z) + abs(x-y+z) + abs(x+y-z)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[3]
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Broken-bond fit of high-symmetry surface energies in fcc Ag view 26827





This Model requires a Model Driver. Archives for the Model Driver EMT_Asap__MD_128315414717_003 appear below.


EMT_Asap__MD_128315414717_003.txz Tar+XZ Linux and OS X archive
EMT_Asap__MD_128315414717_003.zip Zip Windows archive
Wiki is ready to accept new content.

Login to edit Wiki content