Jump to: Tests | Visualizers | Files | Wiki

EMT_Asap_Standard_JacobsenStoltzeNorskov_1996_Pt__MO_637493005914_001

Title
A single sentence description.
EMT potential for Pt developed by Jacobsen, Stoltze, and Norskov (1996) v000
Description
A short description of the Model describing its key features including for example: type of model (pair potential, 3-body potential, EAM, etc.), modeled species (Ac, Ag, ..., Zr), intended purpose, origin, and so on.
Effective Medium Theory (EMT) model based on the EMT implementation in ASAP (https://wiki.fysik.dtu.dk/asap).

Effective Medium Theory is a many-body potential of the same class as Embedded Atom Method, Finnis-Sinclair etc. The main term in the energy per atom is the local density of atoms.

The functional form implemented here is that of Ref. 1. The principles behind EMT are described in Refs. 2 and 3 (with 2 being the more detailed and 3 being the most pedagogical). Be aware that the functional form and even some of the principles have changed since refs 2 and 3. EMT can be considered the last step of a series of approximations starting with Density Functional Theory; see Ref 4.

This model implements the "official" parametrization as published in Ref. 1.

This parametrization is appropriate for single-element simulations of platinum (Pt). For alloy simulations, please use the alloy parametrization EMT_Asap_Standard_JacobsenStoltzeNorskov_1996_AlAgAuCuNiPdPt which uses a slightly larger cutoff to accomodate for all the elements, at the price of changing the properties of the individual elements marginally.

These files are based on Asap version 3.11.5.


REFERENCES:

[1] Jacobsen, K. W., Stoltze, P., & Nørskov, J.: "A semi-empirical effective medium theory for metals and alloys". Surf. Sci. 366, 394–402 (1996).

[2] Jacobsen, K. W., Nørskov, J., & Puska, M.: "Interatomic interactions in the effective-medium theory". Phys. Rev. B 35, 7423–7442 (1987).

[3] Jacobsen, K. W.: "Bonding in Metallic Systems: An Effective-Medium Approach". Comments Cond. Mat. Phys. 14, 129-161 (1988).

[4] Chetty, N., Stokbro, K., Jacobsen, K. W., & Nørskov, J.: "Ab initio potential for solids". Phys. Rev. B 46, 3798–3809 (1992).


KNOWN ISSUES / BUGS:
* On-the-fly modifications of the parameters is not supported, and should be implemented in the future.
Species
The supported atomic species.
Pt
Content Origin https://gitlab.com/asap/asap
Contributor schiotz
Maintainer schiotz
Author Jakob Schiøtz
Publication Year 2019
Source Citations
A citation to primary published work(s) that describe this KIM Item.

Jacobsen KW, Stoltze P, Nørskov JK (1996) A semi-empirical effective medium theory for metals and alloys. Surface Science 366(2):394–402. doi:10.1016/0039-6028(96)00816-3

Item Citation Click here to download a citation in BibTeX format.
Short KIM ID
The unique KIM identifier code.
MO_637493005914_001
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
EMT_Asap_Standard_JacobsenStoltzeNorskov_1996_Pt__MO_637493005914_001
DOI 10.25950/e28557e7
https://doi.org/10.25950/e28557e7
https://search.datacite.org/works/10.25950/e28557e7
KIM Item Type
Specifies whether this is a Stand-alone Model (software implementation of an interatomic model); Parameterized Model (parameter file to be read in by a Model Driver); Model Driver (software implementation of an interatomic model that reads in parameters).
Parameterized Model using Model Driver EMT_Asap__MD_128315414717_004
DriverEMT_Asap__MD_128315414717_004
KIM API Version2.0
Previous Version EMT_Asap_Standard_JacobsenStoltzeNorskov_1996_Pt__MO_637493005914_000

Verification Check Dashboard

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-species-supported-as-stated mandatory
The model supports all species it claims to support; see full description.
Results Files
P vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
P vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
A vc-forces-numerical-derivative consistency
Forces computed by the model agree with numerical derivatives of the energy; see full description.
Results Files
F vc-dimer-continuity-c1 informational
The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.
Results Files
P vc-objectivity informational
Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.
Results Files
P vc-inversion-symmetry informational
Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.
Results Files
P vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files
P vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files

Visualizers (in-page)


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Pt

Click on any thumbnail to get a full size image.



Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

Species: Pt

Click on any thumbnail to get a full size image.



Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Pt

Click on any thumbnail to get a full size image.



FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Pt

Click on any thumbnail to get a full size image.



SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Pt

Click on any thumbnail to get a full size image.



Cubic Crystal Basic Properties Table

Species: Pt



Tests

CohesiveEnergyVsLatticeConstant__TD_554653289799_002
This Test Driver uses LAMMPS to compute the cohesive energy of a given monoatomic cubic lattice (fcc, bcc, sc, or diamond) at a variety of lattice spacings. The lattice spacings range from a_min (=a_min_frac*a_0) to a_max (=a_max_frac*a_0) where a_0, a_min_frac, and a_max_frac are read from stdin (a_0 is typically approximately equal to the equilibrium lattice constant). The precise scaling and number of lattice spacings sampled between a_min and a_0 (a_0 and a_max) is specified by two additional parameters passed from stdin: N_lower and samplespacing_lower (N_upper and samplespacing_upper). Please see README.txt for further details.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
CohesiveEnergyVsLatticeConstant_bcc_Pt__TE_852024024775_002 view 451
CohesiveEnergyVsLatticeConstant_diamond_Pt__TE_607297691797_002 view 451
CohesiveEnergyVsLatticeConstant_fcc_Pt__TE_164136256057_002 view 355
CohesiveEnergyVsLatticeConstant_sc_Pt__TE_157772593014_002 view 451
ElasticConstantsCubic__TD_011862047401_004
Computes the cubic elastic constants for some common crystal types (fcc, bcc, sc) by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
ElasticConstantsCubic_bcc_Pt__TE_044796406471_004 view 1709
ElasticConstantsCubic_fcc_Pt__TE_304169980530_004 view 2031
ElasticConstantsCubic_sc_Pt__TE_076340850633_004 view 2289
ElasticConstantsHexagonal__TD_612503193866_003
Computes the elastic constants for hcp crystals by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
ElasticConstantsHexagonal_hcp_Pt__TE_328579240125_003 view 2031
LatticeConstantCubicEnergy__TD_475411767977_005
Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
LatticeConstantCubicEnergy_bcc_Pt__TE_456905666653_005 view 516
LatticeConstantCubicEnergy_diamond_Pt__TE_136530762051_005 view 806
LatticeConstantCubicEnergy_fcc_Pt__TE_202249747456_005 view 774
LatticeConstantCubicEnergy_sc_Pt__TE_671050090410_005 view 871
LatticeConstantHexagonalEnergy__TD_942334626465_004
Calculates lattice constant of hexagonal bulk structures at zero temperature and pressure by using simplex minimization to minimize the potential energy.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
LatticeConstantHexagonalEnergy_hcp_Pt__TE_646115617497_004 view 5772
PhononDispersionCurve__TD_530195868545_003
Calculates the phonon dispersion relations for fcc lattices and records the results as curves.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
PhononDispersionCurve_fcc_Pt__TE_751500878459_003 view 73065
SurfaceEnergyCubicCrystalBrokenBondFit__TD_955413365818_003
Calculates the surface energy of several high symmetry surfaces and produces a broken-bond model fit. In latex form, the fit equations are given by:

E_{FCC} (\vec{n}) = p_1 (4 \left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\right)) + p_2 (8 \left( |x| + |y| + |z|\right)) + p_3 (2 ( |x+ 2y + z| + |x+2y-z| + |x-2y + z| + |x-2y-z| + |2x+y+z| + |2x+y-z| +|2x-y+z| +|2x-y-z| +|x+y+2z| +|x+y-2z| +|x-y+2z| +|x-y-2z| ) + c

E_{BCC} (\vec{n}) = p_1 (6 \left( | x+y+z| + |x+y-z| + |-x+y-z| + |x-y+z| \right)) + p_2 (8 \left( |x| + |y| + |z|\right)) + p_3 (4 \left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\right)) +c.

In Python, these two fits take the following form:

def BrokenBondFCC(params, index):

import numpy
x, y, z = index
x = x / numpy.sqrt(x**2.+y**2.+z**2.)
y = y / numpy.sqrt(x**2.+y**2.+z**2.)
z = z / numpy.sqrt(x**2.+y**2.+z**2.)

return params[0]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*(abs(x+2*y+z) + abs(x+2*y-z) +abs(x-2*y+z) +abs(x-2*y-z) + abs(2*x+y+z) +abs(2*x+y-z) +abs(2*x-y+z) +abs(2*x-y-z) + abs(x+y+2*z) +abs(x+y-2*z) +abs(x-y+2*z) +abs(x-y-2*z))+params[3]

def BrokenBondBCC(params, x, y, z):


import numpy
x, y, z = index
x = x / numpy.sqrt(x**2.+y**2.+z**2.)
y = y / numpy.sqrt(x**2.+y**2.+z**2.)
z = z / numpy.sqrt(x**2.+y**2.+z**2.)

return params[0]*6*(abs(x+y+z) + abs(x-y-z) + abs(x-y+z) + abs(x+y-z)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[3]
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
SurfaceEnergyCubicCrystalBrokenBondFit_fcc_Pt__TE_658176966451_003 view 31019





Download Dependency

This Model requires a Model Driver. Archives for the Model Driver EMT_Asap__MD_128315414717_004 appear below.


EMT_Asap__MD_128315414717_004.txz Tar+XZ Linux and OS X archive
EMT_Asap__MD_128315414717_004.zip Zip Windows archive

Wiki

Wiki is ready to accept new content.

Login to edit Wiki content