Title
A single sentence description.
|
A glue potential (EAM-style) for Al due to Ercolessi and Adams |
---|---|
Description
A short description of the Model describing its key features including for example: type of model (pair potential, 3-body potential, EAM, etc.), modeled species (Ac, Ag, ..., Zr), intended purpose, origin, and so on.
|
This is a glue potential (which has the same functional form as EAM) for pure aluminum due to F. Ercolessi and J. B. Adams. The potential was developed using the "force-matching method", which includes forces from first-principles calculations in the fitting data base. The potential was fitted to properties of face-centered cubic (fcc) crystals. |
Species
The supported atomic species.
| Al |
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
|
By design, this potential is not expected to be accurate for geometries with extremely low coordination -- such as small molecules -- which were not included in the input set. |
Contributor |
Ellad B. Tadmor |
Maintainer |
Ellad B. Tadmor |
Published on KIM | 2014 |
How to Cite | Click here to download this citation in BibTeX format. |
Funding | Not available |
Short KIM ID
The unique KIM identifier code.
| MO_324507536345_001 |
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
| Glue_Ercolessi_Adams_Al__MO_324507536345_001 |
Citable Link | https://openkim.org/cite/MO_324507536345_001 |
KIM Item Type
Specifies whether this is a Portable Model (software implementation of an interatomic model); Portable Model with parameter file (parameter file to be read in by a Model Driver); Model Driver (software implementation of an interatomic model that reads in parameters).
| Portable Model |
KIM API Version | 1.6 |
Programming Language(s)
The programming languages used in the code and the percentage of the code written in each one. "N/A" means "not applicable" and refers to model parameterizations which only include parameter tables and have no programming language.
| 100.00% Fortran |
Previous Version | Glue_Ercolessi_Adams_Al__MO_324507536345_000 |
Grade | Name | Category | Brief Description | Full Results | Aux File(s) |
---|---|---|---|---|---|
P | vc-species-supported-as-stated | mandatory | The model supports all species it claims to support; see full description. |
Results | Files |
P | vc-permutation-symmetry | mandatory | Total energy and forces are unchanged when swapping atoms of the same species; see full description. |
Results | Files |
P | vc-thread-safe | mandatory | The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description. |
Results | Files |
This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
(No matching species)This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.
(No matching species)This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
(No matching species)This graph shows the dislocation core energy of a cubic crystal at zero temperature and pressure for a specific set of dislocation core cutoff radii. After obtaining the total energy of the system from conjugate gradient minimizations, non-singular, isotropic and anisotropic elasticity are applied to obtain the dislocation core energy for each of these supercells with different dipole distances. Graphs are generated for each species supported by the model.
(No matching species)This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
(No matching species)This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
(No matching species)This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
(No matching species)This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
(No matching species)This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
(No matching species)By design, this potential is not expected to be accurate for geometries with extremely low coordination -- such as small molecules -- which were not included in the input set.
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Cohesive energy versus lattice constant curve for bcc Aluminum | view | 1652 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Elastic constants for bcc Al at zero temperature | view | 2960 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Equilibrium zero-temperature lattice constant for bcc Al | view | 1308 | |
Equilibrium zero-temperature lattice constant for sc Al | view | 12845 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
PhononDispersionCurve_fcc_Al | view | 1173382 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
SurfaceTest_fcc_Al | view | 1258033 |
Test | Error Categories | Link to Error page |
---|---|---|
Cohesive energy versus lattice constant curve for diamond Aluminum | other | view |
Cohesive energy versus lattice constant curve for sc Aluminum | other | view |
Test | Error Categories | Link to Error page |
---|---|---|
Elastic constants for sc Al at zero temperature | other | view |
Test | Error Categories | Link to Error page |
---|---|---|
Classical and first strain gradient elastic constants for fcc aluminum | other | view |
Test | Error Categories | Link to Error page |
---|---|---|
Equilibrium zero-temperature lattice constant for diamond Al | other | view |
Equilibrium zero-temperature lattice constant for fcc Al | other | view |
Test | Error Categories | Link to Error page |
---|---|---|
Equilibrium lattice constants for hcp Al | other | view |
Verification Check | Error Categories | Link to Error page |
---|---|---|
DimerContinuityC1__VC_303890932454_001 | other | view |
ForcesNumerDeriv__VC_710586816390_001 | other | view |
InversionSymmetry__VC_021653764022_000 | other | view |
MemoryLeak__VC_561022993723_000 | other | view |
Objectivity__VC_813478999433_000 | other | view |
PeriodicitySupport__VC_895061507745_000 | other | view |
Glue_Ercolessi_Adams_Al__MO_324507536345_001.txz | Tar+XZ | Linux and OS X archive |
Glue_Ercolessi_Adams_Al__MO_324507536345_001.zip | Zip | Windows archive |