Jump to: Models | Files | Wiki

LinearThermalExpansionCoeff_diamond_Ge__TE_778011010022_002

Title
A single sentence description.
Linear thermal expansion coefficient of diamond Ge at 293.15 K under a pressure of 0 MPa v002
Description Linear thermal expansion coefficient of a diamond lattice of Ge atoms at a temperature of 293.15 K under a pressure of 0 MPa.
Species
The supported atomic species.
Ge
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
None
Contributor Mingjian Wen
Maintainer Mingjian Wen
Developer Mingjian Wen
Brendon Waters
Published on KIM 2024
How to Cite

This Test is archived in OpenKIM [1-4].

[1] Wen M, Waters B. Linear thermal expansion coefficient of diamond Ge at 293.15 K under a pressure of 0 MPa v002 [Internet]. OpenKIM; 2024. Available from: https://openkim.org/cite/TE_778011010022_002

[2] Wen M, Waters B. Linear thermal expansion coefficient of cubic crystal structures v002. OpenKIM; 2024. doi:10.25950/9d9822ec

[3] Tadmor EB, Elliott RS, Sethna JP, Miller RE, Becker CA. The potential of atomistic simulations and the Knowledgebase of Interatomic Models. JOM. 2011;63(7):17. doi:10.1007/s11837-011-0102-6

[4] Elliott RS, Tadmor EB. Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API). OpenKIM; 2011. doi:10.25950/ff8f563a

Click here to download the above citation in BibTeX format.
Funding Not available
Short KIM ID
The unique KIM identifier code.
TE_778011010022_002
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
LinearThermalExpansionCoeff_diamond_Ge__TE_778011010022_002
Citable Link https://openkim.org/cite/TE_778011010022_002
KIM Item TypeTest
DriverLinearThermalExpansionCoeffCubic__TD_522633393614_002
Properties
Properties as defined in kimspec.edn. These properties are inhereted from the Test Driver.
KIM API Version2.3.0
Simulator Name
The name of the simulator as defined in kimspec.edn. This Simulator Name is inhereted from the Test Driver.
LAMMPS
Programming Language(s)
The programming languages used in the code and the percentage of the code written in each one.
100.00% Python
Previous Version LinearThermalExpansionCoeff_diamond_Ge__TE_778011010022_001


EDIP__MD_506186535567_002
Model Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
EDIP_BelkoGusakovDorozhkin_2010_Ge__MO_129433059219_001 view 333648
MEAM_LAMMPS__MD_249792265679_002
Model Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
MEAM_LAMMPS_KimShinLee_2008_Ge__MO_657096500078_001 view 1087118
SNAP__MD_536750310735_000
Model Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
SNAP_ZuoChenLi_2019quadratic_Ge__MO_766484508139_000 view 49924062
SW__MD_335816936951_005
Model Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
SW_DingAndersen_1986_Ge__MO_775478537242_000 view 465543
Tersoff_LAMMPS__MD_077075034781_005
Model Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Tersoff_LAMMPS_MahdizadehAkhlamadi_2017_Ge__MO_344019981553_000 view 999320
Tersoff_LAMMPS_Tersoff_1989_SiGe__MO_350526375143_004 view 1119989





This Test requires a Test Driver. Archives for the Test Driver LinearThermalExpansionCoeffCubic__TD_522633393614_002 appear below.


LinearThermalExpansionCoeffCubic__TD_522633393614_002.txz Tar+XZ Linux and OS X archive
LinearThermalExpansionCoeffCubic__TD_522633393614_002.zip Zip Windows archive
Wiki is ready to accept new content.

Login to edit Wiki content