Jump to: Tests | Visualizers | Files | Wiki

MEAM_LAMMPS_AlmyrasSangiovanniSarakinos_2019_NAlTi__MO_958395190627_001

Interatomic potential for Aluminum (Al), Nitrogen (N), Titanium (Ti).
Use this Potential

Title
A single sentence description.
MEAM potential for the N-Al-Ti system developed by Almyras et al. v001
Description
A short description of the Model describing its key features including for example: type of model (pair potential, 3-body potential, EAM, etc.), modeled species (Ac, Ag, ..., Zr), intended purpose, origin, and so on.
Semi-Empirical Force-Field Model for the Ti1-xAlxN (0 ≤ x ≤ 1) System\n\nG. A. Almyras, D. G. Sangiovanni, K. Sarakinos\n\nWe present a modified embedded atom method (MEAM) semi-empirical force-field model for the Ti1-xAlxN (0 ≤ x ≤ 1) alloy system. The MEAM parameters, determined via an adaptive simulated-annealing (ASA) minimization scheme, optimize the model’s predictions with respect to 0 K equilibrium volumes, elastic constants, cohesive energies, enthalpies of mixing, and point-defect formation energies, for a set of 40 elemental, binary, and ternary Ti-Al-N structures and configurations. Subsequently, the reliability of the model is thoroughly verified against known finite-temperature thermodynamic and kinetic properties of key binary Ti-N and Al-N phases, as well as properties of Ti1-xAlxN (0 < x < 1) alloys. The successful outcome of the validation underscores the transferability of our model, opening the way for large-scale molecular dynamics simulations of, e.g., phase evolution, interfacial processes, and mechanical response in Ti-Al-N-based alloys, superlattices, and nanostructures.
Species
The supported atomic species.
Al, N, Ti
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
None
Content Origin https://www.mdpi.com/journal/materials/special_issues/Computational_alloys
Content Other Locations https://openkim.org/id/Sim_LAMMPS_MEAM_AlmyrasSangiovanniSarakinos_2019_NAlTi__SM_871795249052_000
Contributor Yaser Afshar
Maintainer Yaser Afshar
Developer Georgios Almyras
D.G. Sangiovanni
Kostas Sarakinos
Published on KIM 2021
How to Cite Click here to download this citation in BibTeX format.
Funding Not available
Short KIM ID
The unique KIM identifier code.
MO_958395190627_001
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
MEAM_LAMMPS_AlmyrasSangiovanniSarakinos_2019_NAlTi__MO_958395190627_001
DOI 10.25950/7f6ac722
https://doi.org/10.25950/7f6ac722
https://commons.datacite.org/doi.org/10.25950/7f6ac722
KIM Item Type
Specifies whether this is a Portable Model (software implementation of an interatomic model); Portable Model with parameter file (parameter file to be read in by a Model Driver); Model Driver (software implementation of an interatomic model that reads in parameters).
Portable Model using Model Driver MEAM_LAMMPS__MD_249792265679_001
DriverMEAM_LAMMPS__MD_249792265679_001
KIM API Version2.2
Potential Type meam
Previous Version MEAM_LAMMPS_AlmyrasSangiovanniSarakinos_2019_NAlTi__MO_958395190627_000

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-species-supported-as-stated mandatory
The model supports all species it claims to support; see full description.
Results Files
P vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
P vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
A vc-forces-numerical-derivative consistency
Forces computed by the model agree with numerical derivatives of the energy; see full description.
Results Files
F vc-dimer-continuity-c1 informational
The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.
Results Files
P vc-objectivity informational
Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.
Results Files
P vc-inversion-symmetry informational
Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.
Results Files
P vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files
P vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files
P vc-unit-conversion mandatory
The model is able to correctly convert its energy and/or forces to different unit sets; see full description.
Results Files


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Al
Species: Ti


Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

Species: Al
Species: Ti


Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Ti
Species: Al


Dislocation Core Energies

This graph shows the dislocation core energy of a cubic crystal at zero temperature and pressure for a specific set of dislocation core cutoff radii. After obtaining the total energy of the system from conjugate gradient minimizations, non-singular, isotropic and anisotropic elasticity are applied to obtain the dislocation core energy for each of these supercells with different dipole distances. Graphs are generated for each species supported by the model.

(No matching species)

FCC Elastic Constants

This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Ti
Species: Al


FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Ti
Species: Al


FCC Stacking Fault Energies

This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Al


FCC Surface Energies

This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Al


SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Al
Species: Ti


Cubic Crystal Basic Properties Table

Species: Al

Species: N

Species: Ti





Cohesive energy versus lattice constant curve for monoatomic cubic lattices v003

Creators:
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/64cb38c5

This Test Driver uses LAMMPS to compute the cohesive energy of a given monoatomic cubic lattice (fcc, bcc, sc, or diamond) at a variety of lattice spacings. The lattice spacings range from a_min (=a_min_frac*a_0) to a_max (=a_max_frac*a_0) where a_0, a_min_frac, and a_max_frac are read from stdin (a_0 is typically approximately equal to the equilibrium lattice constant). The precise scaling and number of lattice spacings sampled between a_min and a_0 (a_0 and a_max) is specified by two additional parameters passed from stdin: N_lower and samplespacing_lower (N_upper and samplespacing_upper). Please see README.txt for further details.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Cohesive energy versus lattice constant curve for bcc Al v004 view 14163
Cohesive energy versus lattice constant curve for bcc Ti v004 view 10672
Cohesive energy versus lattice constant curve for diamond Al v004 view 11050
Cohesive energy versus lattice constant curve for diamond Ti v004 view 13988
Cohesive energy versus lattice constant curve for fcc Al v004 view 15356
Cohesive energy versus lattice constant curve for fcc Ti v004 view 10811
Cohesive energy versus lattice constant curve for sc Al v004 view 15542
Cohesive energy versus lattice constant curve for sc Ti v004 view 13693


Elastic constants for cubic crystals at zero temperature and pressure v006

Creators: Junhao Li and Ellad Tadmor
Contributor: tadmor
Publication Year: 2019
DOI: https://doi.org/10.25950/5853fb8f

Computes the cubic elastic constants for some common crystal types (fcc, bcc, sc, diamond) by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for bcc Al at zero temperature v006 view 27656
Elastic constants for bcc Ti at zero temperature v006 view 55558
Elastic constants for diamond Al at zero temperature v001 view 56281
Elastic constants for fcc Al at zero temperature v006 view 62292
Elastic constants for fcc Ti at zero temperature v006 view 28252
Elastic constants for sc Al at zero temperature v006 view 27581
Elastic constants for sc Ti at zero temperature v006 view 29072


Equilibrium structure and energy for a crystal structure at zero temperature and pressure v000

Creators:
Contributor: ilia
Publication Year: 2023
DOI: https://doi.org/10.25950/53ef2ea4

Computes the equilibrium crystal structure and energy for an arbitrary crystal at zero temperature and applied stress by performing symmetry-constrained relaxation. The crystal structure is specified using the AFLOW prototype designation. Multiple sets of free parameters corresponding to the crystal prototype may be specified as initial guesses for structure optimization. No guarantee is made regarding the stability of computed equilibria, nor that any are the ground state.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium crystal structure and energy for AlTi in AFLOW crystal prototype A2B_oC12_65_acg_h v000 view 91584
Equilibrium crystal structure and energy for AlTi in AFLOW crystal prototype A2B_tI24_141_2e_e v000 view 190603
Equilibrium crystal structure and energy for AlTi in AFLOW crystal prototype A3B_cP4_221_c_a v000 view 73841
Equilibrium crystal structure and energy for AlTi in AFLOW crystal prototype A3B_tI8_139_ad_b v000 view 82529
Equilibrium crystal structure and energy for Al in AFLOW crystal prototype A_cF4_225_a v000 view 77082
Equilibrium crystal structure and energy for Ti in AFLOW crystal prototype A_cF4_225_a v000 view 77290
Equilibrium crystal structure and energy for N in AFLOW crystal prototype A_cI20_217_ce v000 view 245672
Equilibrium crystal structure and energy for Al in AFLOW crystal prototype A_cI2_229_a v000 view 79068
Equilibrium crystal structure and energy for Ti in AFLOW crystal prototype A_cI2_229_a v000 view 66553
Equilibrium crystal structure and energy for N in AFLOW crystal prototype A_cP8_198_2a v000 view 113842
Equilibrium crystal structure and energy for N in AFLOW crystal prototype A_cP8_205_c v000 view 112050
Equilibrium crystal structure and energy for N in AFLOW crystal prototype A_hP2_194_c v000 view 76418
Equilibrium crystal structure and energy for Ti in AFLOW crystal prototype A_hP3_191_ad v000 view 70234
Equilibrium crystal structure and energy for N in AFLOW crystal prototype A_hP4_194_f v000 view 64291
Equilibrium crystal structure and energy for N in AFLOW crystal prototype A_hR16_167_cf v000 view 2807507
Equilibrium crystal structure and energy for N in AFLOW crystal prototype A_oP2_51_e v000 view 68548
Equilibrium crystal structure and energy for N in AFLOW crystal prototype A_tP4_136_f v000 view 60663
Equilibrium crystal structure and energy for AlTi in AFLOW crystal prototype AB2_cF12_216_a_bc v000 view 122357
Equilibrium crystal structure and energy for NTi in AFLOW crystal prototype AB2_tI12_141_a_e v000 view 90290
Equilibrium crystal structure and energy for NTi in AFLOW crystal prototype AB2_tP6_136_a_f v000 view 81645
Equilibrium crystal structure and energy for AlTi in AFLOW crystal prototype AB3_cF16_225_a_bc v000 view 123808
Equilibrium crystal structure and energy for AlTi in AFLOW crystal prototype AB3_hP8_194_c_h v000 view 79120
Equilibrium crystal structure and energy for AlN in AFLOW crystal prototype AB_cF8_216_a_c v000 view 117810
Equilibrium crystal structure and energy for AlN in AFLOW crystal prototype AB_cF8_225_a_b v000 view 103142
Equilibrium crystal structure and energy for NTi in AFLOW crystal prototype AB_cF8_225_a_b v000 view 99388
Equilibrium crystal structure and energy for NTi in AFLOW crystal prototype AB_cP2_221_a_b v000 view 90921
Equilibrium crystal structure and energy for AlN in AFLOW crystal prototype AB_hP4_186_b_b v000 view 103796
Equilibrium crystal structure and energy for AlN in AFLOW crystal prototype AB_hP4_194_c_d v000 view 89136
Equilibrium crystal structure and energy for AlN in AFLOW crystal prototype AB_oC8_63_c_c v000 view 60884
Equilibrium crystal structure and energy for AlTi in AFLOW crystal prototype AB_tP2_123_a_d v000 view 97768


Relaxed energy as a function of tilt angle for a symmetric tilt grain boundary within a cubic crystal v002

Creators: Brandon Runnels
Contributor: brunnels
Publication Year: 2019
DOI: https://doi.org/10.25950/4723cee7

Computes grain boundary energy for a range of tilt angles given a crystal structure, tilt axis, and material.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Relaxed energy as a function of tilt angle for a 112 symmetric tilt grain boundary in fcc Al v000 view 228152684


Relaxed energy as a function of tilt angle for a symmetric tilt grain boundary within a cubic crystal v003

Creators:
Contributor: brunnels
Publication Year: 2022
DOI: https://doi.org/10.25950/2c59c9d6

Computes grain boundary energy for a range of tilt angles given a crystal structure, tilt axis, and material.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Relaxed energy as a function of tilt angle for a 100 symmetric tilt grain boundary in fcc Al v003 view 39517377
Relaxed energy as a function of tilt angle for a 110 symmetric tilt grain boundary in fcc Al v001 view 138596156
Relaxed energy as a function of tilt angle for a 111 symmetric tilt grain boundary in fcc Al v001 view 74210341


Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure v007

Creators: Daniel S. Karls and Junhao Li
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/2765e3bf

Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium zero-temperature lattice constant for bcc Al v007 view 31927
Equilibrium zero-temperature lattice constant for bcc Ti v007 view 31907
Equilibrium zero-temperature lattice constant for diamond Al v007 view 25084
Equilibrium zero-temperature lattice constant for diamond Ti v007 view 33647
Equilibrium zero-temperature lattice constant for fcc Al v007 view 23146
Equilibrium zero-temperature lattice constant for fcc Ti v007 view 31270
Equilibrium zero-temperature lattice constant for sc Al v007 view 29450
Equilibrium zero-temperature lattice constant for sc Ti v007 view 31449


Equilibrium lattice constants for hexagonal bulk structures at zero temperature and pressure v005

Creators: Daniel S. Karls and Junhao Li
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/c339ca32

Calculates lattice constant of hexagonal bulk structures at zero temperature and pressure by using simplex minimization to minimize the potential energy.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium lattice constants for hcp Al v005 view 591879
Equilibrium lattice constants for hcp N v005 view 748148
Equilibrium lattice constants for hcp Ti v005 view 667973


Linear thermal expansion coefficient of cubic crystal structures v001

Creators: Mingjian Wen
Contributor: mjwen
Publication Year: 2019
DOI: https://doi.org/10.25950/fc69d82d

This Test Driver uses LAMMPS to compute the linear thermal expansion coefficient at a finite temperature under a given pressure for a cubic lattice (fcc, bcc, sc, diamond) of a single given species.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Linear thermal expansion coefficient of fcc Al at 293.15 K under a pressure of 0 MPa v001 view 41238463


Stacking and twinning fault energies of an fcc lattice at zero temperature and pressure v002

Creators:
Contributor: SubrahmanyamPattamatta
Publication Year: 2019
DOI: https://doi.org/10.25950/b4cfaf9a

Intrinsic and extrinsic stacking fault energies, unstable stacking fault energy, unstable twinning energy, stacking fault energy as a function of fractional displacement, and gamma surface for a monoatomic FCC lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Stacking and twinning fault energies for fcc Al v002 view 73850033


High-symmetry surface energies in cubic lattices and broken bond model v004

Creators: Matt Bierbaum
Contributor: mattbierbaum
Publication Year: 2019
DOI: https://doi.org/10.25950/6c43a4e6

Calculates the surface energy of several high symmetry surfaces and produces a broken-bond model fit. In latex form, the fit equations are given by:

E_{FCC} (\vec{n}) = p_1 (4 \left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\right)) + p_2 (8 \left( |x| + |y| + |z|\right)) + p_3 (2 ( |x+ 2y + z| + |x+2y-z| + |x-2y + z| + |x-2y-z| + |2x+y+z| + |2x+y-z| +|2x-y+z| +|2x-y-z| +|x+y+2z| +|x+y-2z| +|x-y+2z| +|x-y-2z| ) + c

E_{BCC} (\vec{n}) = p_1 (6 \left( | x+y+z| + |x+y-z| + |-x+y-z| + |x-y+z| \right)) + p_2 (8 \left( |x| + |y| + |z|\right)) + p_3 (4 \left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\right)) +c.

In Python, these two fits take the following form:

def BrokenBondFCC(params, index):

import numpy
x, y, z = index
x = x / numpy.sqrt(x**2.+y**2.+z**2.)
y = y / numpy.sqrt(x**2.+y**2.+z**2.)
z = z / numpy.sqrt(x**2.+y**2.+z**2.)

return params[0]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*(abs(x+2*y+z) + abs(x+2*y-z) +abs(x-2*y+z) +abs(x-2*y-z) + abs(2*x+y+z) +abs(2*x+y-z) +abs(2*x-y+z) +abs(2*x-y-z) + abs(x+y+2*z) +abs(x+y-2*z) +abs(x-y+2*z) +abs(x-y-2*z))+params[3]

def BrokenBondBCC(params, x, y, z):


import numpy
x, y, z = index
x = x / numpy.sqrt(x**2.+y**2.+z**2.)
y = y / numpy.sqrt(x**2.+y**2.+z**2.)
z = z / numpy.sqrt(x**2.+y**2.+z**2.)

return params[0]*6*(abs(x+y+z) + abs(x-y-z) + abs(x-y+z) + abs(x+y-z)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[3]
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Broken-bond fit of high-symmetry surface energies in fcc Al v004 view 357737





This Model requires a Model Driver. Archives for the Model Driver MEAM_LAMMPS__MD_249792265679_001 appear below.


MEAM_LAMMPS__MD_249792265679_001.txz Tar+XZ Linux and OS X archive
MEAM_LAMMPS__MD_249792265679_001.zip Zip Windows archive
Wiki is ready to accept new content.

Login to edit Wiki content