Title
A single sentence description.
|
MEAM Potential for the Fe-Mn system developed by Kim, Shin, Lee (2009) v001 |
---|---|
Description
A short description of the Model describing its key features including for example: type of model (pair potential, 3-body potential, EAM, etc.), modeled species (Ac, Ag, ..., Zr), intended purpose, origin, and so on.
|
Modified embedded-atom method (MEAM) interatomic potentials for pure Mn and the Fe–Mn binary system have been developed using a previously developed MEAM potential for Fe. In the original paper (Kim et al., Acta Materialia, 57(2), 2009) the potentials can describe various fundamental physical properties of pure Mn (cohesive energy, structural energy differences, lattice parameters, elastic constants, vacancy formation energy, surface energy, etc.) and alloy behaviors (enthalpy of mixing in face-centered cubic and liquid phases, composition dependency of lattice parameters in various solid solutions) in reasonable agreement with experimental information or other empirical approaches. |
Species
The supported atomic species.
| Fe, Mn |
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
|
None |
Content Origin | http://cmse.postech.ac.kr/home_2nnmeam |
Contributor |
Joonho Ji |
Maintainer |
Joonho Ji |
Developer |
Young-Min Kim Young-Han Shin Byeong-Joo Lee |
Published on KIM | 2021 |
How to Cite | Click here to download this citation in BibTeX format. |
Funding | Not available |
Short KIM ID
The unique KIM identifier code.
| MO_058735400462_001 |
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
| MEAM_LAMMPS_KimShinLee_2009_FeMn__MO_058735400462_001 |
DOI |
10.25950/beb4e5ff https://doi.org/10.25950/beb4e5ff https://commons.datacite.org/doi.org/10.25950/beb4e5ff |
KIM Item Type
Specifies whether this is a Portable Model (software implementation of an interatomic model); Portable Model with parameter file (parameter file to be read in by a Model Driver); Model Driver (software implementation of an interatomic model that reads in parameters).
| Portable Model using Model Driver MEAM_LAMMPS__MD_249792265679_001 |
Driver | MEAM_LAMMPS__MD_249792265679_001 |
KIM API Version | 2.2 |
Potential Type | meam |
Previous Version | MEAM_LAMMPS_KimShinLee_2009_FeMn__MO_058735400462_000 |
Grade | Name | Category | Brief Description | Full Results | Aux File(s) |
---|---|---|---|---|---|
P | vc-species-supported-as-stated | mandatory | The model supports all species it claims to support; see full description. |
Results | Files |
P | vc-periodicity-support | mandatory | Periodic boundary conditions are handled correctly; see full description. |
Results | Files |
P | vc-permutation-symmetry | mandatory | Total energy and forces are unchanged when swapping atoms of the same species; see full description. |
Results | Files |
P | vc-objectivity | informational | Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description. |
Results | Files |
P | vc-inversion-symmetry | informational | Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description. |
Results | Files |
P | vc-memory-leak | informational | The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description. |
Results | Files |
P | vc-thread-safe | mandatory | The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description. |
Results | Files |
P | vc-unit-conversion | mandatory | The model is able to correctly convert its energy and/or forces to different unit sets; see full description. |
Results | Files |
This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.
This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
This graph shows the dislocation core energy of a cubic crystal at zero temperature and pressure for a specific set of dislocation core cutoff radii. After obtaining the total energy of the system from conjugate gradient minimizations, non-singular, isotropic and anisotropic elasticity are applied to obtain the dislocation core energy for each of these supercells with different dipole distances. Graphs are generated for each species supported by the model.
(No matching species)This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
(No matching species)This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
(No matching species)This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
(No matching species)This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Cohesive energy versus lattice constant curve for bcc Fe v004 | view | 16362 | |
Cohesive energy versus lattice constant curve for bcc Mn v004 | view | 8384 | |
Cohesive energy versus lattice constant curve for diamond Fe v004 | view | 11592 | |
Cohesive energy versus lattice constant curve for diamond Mn v004 | view | 8524 | |
Cohesive energy versus lattice constant curve for fcc Fe v004 | view | 10734 | |
Cohesive energy versus lattice constant curve for fcc Mn v004 | view | 11264 | |
Cohesive energy versus lattice constant curve for sc Fe v004 | view | 8335 | |
Cohesive energy versus lattice constant curve for sc Mn v004 | view | 8842 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Elastic constants for sc Fe at zero temperature v006 | view | 30932 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Equilibrium zero-temperature lattice constant for bcc Fe v007 | view | 21642 | |
Equilibrium zero-temperature lattice constant for bcc Mn v007 | view | 19564 | |
Equilibrium zero-temperature lattice constant for diamond Fe v007 | view | 22647 | |
Equilibrium zero-temperature lattice constant for diamond Mn v007 | view | 22498 | |
Equilibrium zero-temperature lattice constant for fcc Fe v007 | view | 22199 | |
Equilibrium zero-temperature lattice constant for fcc Mn v007 | view | 20946 | |
Equilibrium zero-temperature lattice constant for sc Fe v007 | view | 21414 | |
Equilibrium zero-temperature lattice constant for sc Mn v007 | view | 20469 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Equilibrium lattice constants for hcp Fe v005 | view | 414261 | |
Equilibrium lattice constants for hcp Mn v005 | view | 432721 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Linear thermal expansion coefficient of bcc Fe at 293.15 K under a pressure of 0 MPa v001 | view | 15336324 |
Test | Error Categories | Link to Error page |
---|---|---|
Equilibrium crystal structure and energy for Fe in AFLOW crystal prototype A_tP1_123_a v000 | other | view |
Test | Error Categories | Link to Error page |
---|---|---|
Relaxed energy as a function of tilt angle for a 100 symmetric tilt grain boundary in fcc Fe v001 | other | view |
Test | Error Categories | Link to Error page |
---|---|---|
Broken-bond fit of high-symmetry surface energies in bcc Fe v004 | other | view |
Verification Check | Error Categories | Link to Error page |
---|---|---|
MemoryLeak__VC_561022993723_004 | other | view |
MEAM_LAMMPS_KimShinLee_2009_FeMn__MO_058735400462_001.txz | Tar+XZ | Linux and OS X archive |
MEAM_LAMMPS_KimShinLee_2009_FeMn__MO_058735400462_001.zip | Zip | Windows archive |
This Model requires a Model Driver. Archives for the Model Driver MEAM_LAMMPS__MD_249792265679_001 appear below.
MEAM_LAMMPS__MD_249792265679_001.txz | Tar+XZ | Linux and OS X archive |
MEAM_LAMMPS__MD_249792265679_001.zip | Zip | Windows archive |