Jump to: Tests | Visualizers | Files | Wiki

MEAM_LAMMPS_KoShimLee_2011_AlH__MO_127847080751_001

Interatomic potential for Aluminum (Al), Hydrogen (H).
Use this Potential

Title
A single sentence description.
MEAM Potential for the Al-H system developed by Ko, Shim, and Lee (2011) v001
Description
A short description of the Model describing its key features including for example: type of model (pair potential, 3-body potential, EAM, etc.), modeled species (Ac, Ag, ..., Zr), intended purpose, origin, and so on.
Second nearest-neighbor modified embedded-atom method (MEAM) interatomic potentials for the Al–H system has been developed on the basis of previously developed MEAM potentials of pure Al, and H. According to the original paper (Ko et al., J. Mater. Res., 26, 2011), the potential can describe various fundamental physical properties of the relevant binary alloys (structural, thermodynamic, defect, and dynamic properties of metastable hydrides or hydrogen in face-centered cubic solid solutions) in good agreement with experiments or first-principles calculations.
Species
The supported atomic species.
Al, H
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
None
Content Origin http://cmse.postech.ac.kr/home_2nnmeam
Contributor Joonho Ji
Maintainer Joonho Ji
Developer Won-Seok Ko
Jae-Hyeok Shim
Byeong-Joo Lee
Published on KIM 2021
How to Cite Click here to download this citation in BibTeX format.
Funding Not available
Short KIM ID
The unique KIM identifier code.
MO_127847080751_001
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
MEAM_LAMMPS_KoShimLee_2011_AlH__MO_127847080751_001
DOI 10.25950/f365e432
https://doi.org/10.25950/f365e432
https://commons.datacite.org/doi.org/10.25950/f365e432
KIM Item Type
Specifies whether this is a Portable Model (software implementation of an interatomic model); Portable Model with parameter file (parameter file to be read in by a Model Driver); Model Driver (software implementation of an interatomic model that reads in parameters).
Portable Model using Model Driver MEAM_LAMMPS__MD_249792265679_001
DriverMEAM_LAMMPS__MD_249792265679_001
KIM API Version2.2
Potential Type meam
Previous Version MEAM_LAMMPS_KoShimLee_2011_AlH__MO_127847080751_000

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-species-supported-as-stated mandatory
The model supports all species it claims to support; see full description.
Results Files
P vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
P vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
P vc-objectivity informational
Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.
Results Files
P vc-inversion-symmetry informational
Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.
Results Files
P vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files
P vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files
P vc-unit-conversion mandatory
The model is able to correctly convert its energy and/or forces to different unit sets; see full description.
Results Files


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Al
Species: H


Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

Species: Al


Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Al
Species: H


Dislocation Core Energies

This graph shows the dislocation core energy of a cubic crystal at zero temperature and pressure for a specific set of dislocation core cutoff radii. After obtaining the total energy of the system from conjugate gradient minimizations, non-singular, isotropic and anisotropic elasticity are applied to obtain the dislocation core energy for each of these supercells with different dipole distances. Graphs are generated for each species supported by the model.

(No matching species)

FCC Elastic Constants

This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Al
Species: H


FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Al
Species: H


FCC Stacking Fault Energies

This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Surface Energies

This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: H
Species: Al


Cubic Crystal Basic Properties Table

Species: Al

Species: H





Cohesive energy versus lattice constant curve for monoatomic cubic lattices v003

Creators:
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/64cb38c5

This Test Driver uses LAMMPS to compute the cohesive energy of a given monoatomic cubic lattice (fcc, bcc, sc, or diamond) at a variety of lattice spacings. The lattice spacings range from a_min (=a_min_frac*a_0) to a_max (=a_max_frac*a_0) where a_0, a_min_frac, and a_max_frac are read from stdin (a_0 is typically approximately equal to the equilibrium lattice constant). The precise scaling and number of lattice spacings sampled between a_min and a_0 (a_0 and a_max) is specified by two additional parameters passed from stdin: N_lower and samplespacing_lower (N_upper and samplespacing_upper). Please see README.txt for further details.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Cohesive energy versus lattice constant curve for bcc Al v004 view 6262
Cohesive energy versus lattice constant curve for diamond Al v004 view 5142
Cohesive energy versus lattice constant curve for fcc Al v004 view 6709
Cohesive energy versus lattice constant curve for sc Al v004 view 5013


Elastic constants for cubic crystals at zero temperature and pressure v006

Creators: Junhao Li and Ellad Tadmor
Contributor: tadmor
Publication Year: 2019
DOI: https://doi.org/10.25950/5853fb8f

Computes the cubic elastic constants for some common crystal types (fcc, bcc, sc, diamond) by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for bcc H at zero temperature v006 view 34503
Elastic constants for diamond Al at zero temperature v001 view 35825
Elastic constants for fcc Al at zero temperature v006 view 22577
Elastic constants for fcc H at zero temperature v006 view 34304
Elastic constants for sc Al at zero temperature v006 view 21881
Elastic constants for sc H at zero temperature v006 view 41853


Equilibrium structure and energy for a crystal structure at zero temperature and pressure v000

Creators:
Contributor: ilia
Publication Year: 2023
DOI: https://doi.org/10.25950/53ef2ea4

Computes the equilibrium crystal structure and energy for an arbitrary crystal at zero temperature and applied stress by performing symmetry-constrained relaxation. The crystal structure is specified using the AFLOW prototype designation. Multiple sets of free parameters corresponding to the crystal prototype may be specified as initial guesses for structure optimization. No guarantee is made regarding the stability of computed equilibria, nor that any are the ground state.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium crystal structure and energy for Al in AFLOW crystal prototype A_cF4_225_a v000 view 76962
Equilibrium crystal structure and energy for Al in AFLOW crystal prototype A_cI2_229_a v000 view 73133
Equilibrium crystal structure and energy for H in AFLOW crystal prototype A_cI2_229_a v000 view 76713
Equilibrium crystal structure and energy for H in AFLOW crystal prototype A_hP2_194_c v000 view 185871
Equilibrium crystal structure and energy for H in AFLOW crystal prototype A_hP4_194_f v000 view 136191
Equilibrium crystal structure and energy for H in AFLOW crystal prototype A_tP1_123_a v000 view 37252
Equilibrium crystal structure and energy for AlH in AFLOW crystal prototype AB3_hR8_167_b_e v000 view 119339
Equilibrium crystal structure and energy for AlH in AFLOW crystal prototype AB3_oC48_63_ad_cfgh v000 view 387078
Equilibrium crystal structure and energy for AlH in AFLOW crystal prototype AB3_oP24_58_ag_c2gh v000 view 281661


Relaxed energy as a function of tilt angle for a symmetric tilt grain boundary within a cubic crystal v003

Creators:
Contributor: brunnels
Publication Year: 2022
DOI: https://doi.org/10.25950/2c59c9d6

Computes grain boundary energy for a range of tilt angles given a crystal structure, tilt axis, and material.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Relaxed energy as a function of tilt angle for a 100 symmetric tilt grain boundary in fcc Al v003 view 22468104
Relaxed energy as a function of tilt angle for a 110 symmetric tilt grain boundary in fcc Al v001 view 131711458
Relaxed energy as a function of tilt angle for a 111 symmetric tilt grain boundary in fcc Al v001 view 35060187


Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure v007

Creators: Daniel S. Karls and Junhao Li
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/2765e3bf

Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium zero-temperature lattice constant for bcc Al v007 view 18291
Equilibrium zero-temperature lattice constant for bcc H v007 view 17346
Equilibrium zero-temperature lattice constant for diamond Al v007 view 18470
Equilibrium zero-temperature lattice constant for diamond H v007 view 19136
Equilibrium zero-temperature lattice constant for fcc Al v007 view 17754
Equilibrium zero-temperature lattice constant for fcc H v007 view 18251
Equilibrium zero-temperature lattice constant for sc Al v007 view 17286
Equilibrium zero-temperature lattice constant for sc H v007 view 18022


Equilibrium lattice constants for hexagonal bulk structures at zero temperature and pressure v005

Creators: Daniel S. Karls and Junhao Li
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/c339ca32

Calculates lattice constant of hexagonal bulk structures at zero temperature and pressure by using simplex minimization to minimize the potential energy.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium lattice constants for hcp Al v005 view 248521
Equilibrium lattice constants for hcp H v005 view 286584


ElasticConstantsCubic__TD_011862047401_006

EquilibriumCrystalStructure__TD_457028483760_000

GrainBoundaryCubicCrystalSymmetricTiltRelaxedEnergyVsAngle__TD_410381120771_002

GrainBoundaryCubicCrystalSymmetricTiltRelaxedEnergyVsAngle__TD_410381120771_003

LinearThermalExpansionCoeffCubic__TD_522633393614_001

PhononDispersionCurve__TD_530195868545_004
Test Error Categories Link to Error page
Phonon dispersion relations for fcc Al v004 other view

StackingFaultFccCrystal__TD_228501831190_002
Test Error Categories Link to Error page
Stacking and twinning fault energies for fcc Al v002 other view

SurfaceEnergyCubicCrystalBrokenBondFit__TD_955413365818_004
Test Error Categories Link to Error page
Broken-bond fit of high-symmetry surface energies in fcc Al v004 other view

No Driver
Verification Check Error Categories Link to Error page
ForcesNumerDeriv__VC_710586816390_003 other view
MemoryLeak__VC_561022993723_004 other view




This Model requires a Model Driver. Archives for the Model Driver MEAM_LAMMPS__MD_249792265679_001 appear below.


MEAM_LAMMPS__MD_249792265679_001.txz Tar+XZ Linux and OS X archive
MEAM_LAMMPS__MD_249792265679_001.zip Zip Windows archive
Wiki is ready to accept new content.

Login to edit Wiki content