Title
A single sentence description.
|
MEAM Potential for the Fe-H system developed by Lee and Jang (2007) v001 |
---|---|
Description
A short description of the Model describing its key features including for example: type of model (pair potential, 3-body potential, EAM, etc.), modeled species (Ac, Ag, ..., Zr), intended purpose, origin, and so on.
|
A modified embedded-atom method (MEAM) interatomic potential for the Fe–H binary system has been developed using previously developed MEAM potentials of Fe and H. The potential parameters were determined by fitting to experimental data on the dilute heat of solution of hydrogen in body-centered cubic (bcc) and face-centered cubic (fcc) Fe, the vacancy–hydrogen binding energy in bcc Fe, and to a first-principles calculation for the lattice parameter and bulk modulus of a hypothetical NaCl-type FeH. The potential accurately reproduces the known physical properties of hydrogen as an interstitial solute element in bcc and fcc Fe. In the original paper (Lee and Jang, Acta Materialia, 55(20), 2007), the applicability of the potential to atomistic approaches for investigating interactions between hydrogen atoms and other defects such as vacancies, dislocations and grain boundaries, and also for investigating the effects of hydrogen on various deformation and mechanical behaviors of iron is demonstrated. |
Species
The supported atomic species.
| Fe, H |
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
|
None |
Content Origin | http://cmse.postech.ac.kr/home_2nnmeam |
Contributor |
Joonho Ji |
Maintainer |
Joonho Ji |
Developer |
Byeong-Joo Lee Je-Wook Jang |
Published on KIM | 2021 |
How to Cite | Click here to download this citation in BibTeX format. |
Funding | Not available |
Short KIM ID
The unique KIM identifier code.
| MO_095610951957_001 |
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
| MEAM_LAMMPS_LeeJang_2007_FeH__MO_095610951957_001 |
DOI |
10.25950/94b6e36f https://doi.org/10.25950/94b6e36f https://commons.datacite.org/doi.org/10.25950/94b6e36f |
KIM Item Type
Specifies whether this is a Portable Model (software implementation of an interatomic model); Portable Model with parameter file (parameter file to be read in by a Model Driver); Model Driver (software implementation of an interatomic model that reads in parameters).
| Portable Model using Model Driver MEAM_LAMMPS__MD_249792265679_001 |
Driver | MEAM_LAMMPS__MD_249792265679_001 |
KIM API Version | 2.2 |
Potential Type | meam |
Previous Version | MEAM_LAMMPS_LeeJang_2007_FeH__MO_095610951957_000 |
Grade | Name | Category | Brief Description | Full Results | Aux File(s) |
---|---|---|---|---|---|
P | vc-periodicity-support | mandatory | Periodic boundary conditions are handled correctly; see full description. |
Results | Files |
P | vc-permutation-symmetry | mandatory | Total energy and forces are unchanged when swapping atoms of the same species; see full description. |
Results | Files |
P | vc-objectivity | informational | Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description. |
Results | Files |
P | vc-memory-leak | informational | The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description. |
Results | Files |
P | vc-unit-conversion | mandatory | The model is able to correctly convert its energy and/or forces to different unit sets; see full description. |
Results | Files |
This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
(No matching species)This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.
This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
(No matching species)This graph shows the dislocation core energy of a cubic crystal at zero temperature and pressure for a specific set of dislocation core cutoff radii. After obtaining the total energy of the system from conjugate gradient minimizations, non-singular, isotropic and anisotropic elasticity are applied to obtain the dislocation core energy for each of these supercells with different dipole distances. Graphs are generated for each species supported by the model.
(No matching species)This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
(No matching species)This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
(No matching species)This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
(No matching species)This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
(No matching species)Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Cohesive energy versus lattice constant curve for fcc Fe v004 | view | 5938 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Relaxed energy as a function of tilt angle for a 100 symmetric tilt grain boundary in fcc Fe v001 | view | 29970341 | |
Relaxed energy as a function of tilt angle for a 111 symmetric tilt grain boundary in fcc Fe v001 | view | 35178515 | |
Relaxed energy as a function of tilt angle for a 112 symmetric tilt grain boundary in fcc Fe v001 | view | 209683998 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Equilibrium zero-temperature lattice constant for bcc Fe v007 | view | 16620 | |
Equilibrium zero-temperature lattice constant for diamond Fe v007 | view | 16401 | |
Equilibrium zero-temperature lattice constant for fcc Fe v007 | view | 16769 | |
Equilibrium zero-temperature lattice constant for fcc H v007 | view | 16451 | |
Equilibrium zero-temperature lattice constant for sc Fe v007 | view | 15715 | |
Equilibrium zero-temperature lattice constant for sc H v007 | view | 15745 |
Test | Error Categories | Link to Error page |
---|---|---|
Elastic constants for fcc Fe at zero temperature v006 | other | view |
Test | Error Categories | Link to Error page |
---|---|---|
Equilibrium crystal structure and energy for Fe in AFLOW crystal prototype A_tP1_123_a v000 | other | view |
Test | Error Categories | Link to Error page |
---|---|---|
Relaxed energy as a function of tilt angle for a 111 symmetric tilt grain boundary in fcc Fe v000 | other | view |
Relaxed energy as a function of tilt angle for a 112 symmetric tilt grain boundary in fcc Fe v000 | other | view |
Test | Error Categories | Link to Error page |
---|---|---|
Relaxed energy as a function of tilt angle for a 110 symmetric tilt grain boundary in fcc Fe v001 | other | view |
Test | Error Categories | Link to Error page |
---|---|---|
Equilibrium zero-temperature lattice constant for bcc H v007 | other | view |
Equilibrium zero-temperature lattice constant for diamond H v007 | other | view |
Verification Check | Error Categories | Link to Error page |
---|---|---|
InversionSymmetry__VC_021653764022_002 | other | view |
SpeciesSupportedAsStated__VC_651200051721_002 | other | view |
MEAM_LAMMPS_LeeJang_2007_FeH__MO_095610951957_001.txz | Tar+XZ | Linux and OS X archive |
MEAM_LAMMPS_LeeJang_2007_FeH__MO_095610951957_001.zip | Zip | Windows archive |
This Model requires a Model Driver. Archives for the Model Driver MEAM_LAMMPS__MD_249792265679_001 appear below.
MEAM_LAMMPS__MD_249792265679_001.txz | Tar+XZ | Linux and OS X archive |
MEAM_LAMMPS__MD_249792265679_001.zip | Zip | Windows archive |