Jump to: Tests | Visualizers | Files | Wiki

MEAM_LAMMPS_NouranianTschoppGwaltney_2014_CH__MO_354152387712_001

Interatomic potential for Carbon (C), Hydrogen (H).
Use this Potential

Title
A single sentence description.
MEAM potential for saturated hydrocarbons developed by Nouranian et al. (2014) v001
Description
A short description of the Model describing its key features including for example: type of model (pair potential, 3-body potential, EAM, etc.), modeled species (Ac, Ag, ..., Zr), intended purpose, origin, and so on.
This model presents an interatomic potential for saturated hydrocarbons using the modified embedded-atom method (MEAM). Nouranian et al. parameterized the potential by fitting to a large experimental and first-principles (FP) database. The database consists of (1) bond distances, bond angles, and atomization energies at 0K of a homologous series of alkanes and their select isomers from methane to n-octane (2) the potential energy curves of H2, CH, and C2 diatomics (3) the potential energy curves of hydrogen, methane, ethane, and propane dimers, i.e., (H2)2, (CH4)2, (C2H6)2, and (C3H8)2, respectively (4) pressure-volume-temperature (PVT) data of a dense high-pressure methane system with a density of 0.5534 g/cc. Nouranian et al. calculated the atomization energies and geometries of a range of linear alkanes, cycloalkanes, and free radicals. The results are compared to those calculated by other commonly used reactive potentials for hydrocarbons (i.e., second-generation reactive empirical bond order (REBO) and reactive force field (ReaxFF)). MEAM reproduced the experimental and/or FP data with accuracy comparable to or better than REBO or ReaxFF. The experimental PVT data for a relatively large series of methane, ethane, propane, and butane systems with different densities were predicted reasonably well by this MEAM potential. Although the MEAM formalism has been applied to atomic systems with predominantly metallic bonding in the past, the current work demonstrates the promising extension of the MEAM potential to covalently bonded molecular systems, specifically saturated hydrocarbons and saturated hydrocarbon-based polymers.
The MEAM potential has already been parameterized for many metallic unary, binary, ternary, carbide, nitride, and hydride systems. The current extension to saturated hydrocarbons provides a reliable and transferable potential for atomistic/molecular studies of complex material phenomena involving hydrocarbon-metal or polymer-metal interfaces, polymer-metal nanocomposites, fracture, and failure in hydrocarbon-based polymers, and more. The latter is especially true since MEAM is a reactive potential that allows for dynamic bond formation and bond breaking during a simulation. The results show that MEAM predicts the energetics of two major chemical reactions for saturated hydrocarbons, i.e., breaking a C-C and a C–H bond, reasonably well. However, the current parameterization does not accurately reproduce the energetics and structures of unsaturated hydrocarbons and, therefore, should not be applied to such systems.
Species
The supported atomic species.
C, H
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
The current parameterization does not accurately reproduce the energetics and structures of unsaturated hydrocarbons and, therefore, should not be applied to such systems.
Content Origin NIST IPRP (https://www.ctcms.nist.gov/potentials/system/CH/#CH)
Contributor Yaser Afshar
Maintainer Yaser Afshar
Developer Sasan Nouranian
Mark A. Tschopp
Steven R. Gwaltney
Michael I. Baskes
Mark F. Horstemeyer
Publication Year 2021
How to Cite

This Model originally published in [1] is archived in OpenKIM [2-5].

[1] Nouranian S, Tschopp MA, Gwaltney SR, Baskes MI, Horstemeyer MF. An interatomic potential for saturated hydrocarbons based on the modified embedded-atom method. Phys Chem Chem Phys. 2014;16(13):6233–49. doi:10.1039/C4CP00027G — (Primary Source) A primary source is a reference directly related to the item documenting its development, as opposed to other sources that are provided as background information.

[2] MEAM potential for saturated hydrocarbons developed by Nouranian et al. (2014) v001. OpenKIM; 2021. doi:10.25950/c3f6de35

[3] The modified embedded atom method (MEAM) potential v001. OpenKIM; 2021. doi:10.25950/773efb8e

[4] Tadmor EB, Elliott RS, Sethna JP, Miller RE, Becker CA. The potential of atomistic simulations and the Knowledgebase of Interatomic Models. JOM. 2011;63(7):17. doi:10.1007/s11837-011-0102-6

[5] Elliott RS, Tadmor EB. Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API). OpenKIM; 2011. doi:10.25950/ff8f563a

Click here to download the above citation in BibTeX format.
Funding Not available
Short KIM ID
The unique KIM identifier code.
MO_354152387712_001
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
MEAM_LAMMPS_NouranianTschoppGwaltney_2014_CH__MO_354152387712_001
DOI 10.25950/c3f6de35
https://doi.org/10.25950/c3f6de35
https://search.datacite.org/works/10.25950/c3f6de35
KIM Item Type
Specifies whether this is a Portable Model (software implementation of an interatomic model); Portable Model with parameter file (parameter file to be read in by a Model Driver); Model Driver (software implementation of an interatomic model that reads in parameters).
Portable Model using Model Driver MEAM_LAMMPS__MD_249792265679_001
DriverMEAM_LAMMPS__MD_249792265679_001
KIM API Version2.2
Potential Type meam
Previous Version MEAM_LAMMPS_NouranianTschoppGwaltney_2014_CH__MO_354152387712_000

Visualizers (in-page)


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

(No matching species)

Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Elastic Constants

This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Stacking Fault Energies

This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Surface Energies

This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

Cubic Crystal Basic Properties Table

Species: C

Species: H



Tests

Disclaimer From Model Developer

The current parameterization does not accurately reproduce the energetics and structures of unsaturated hydrocarbons and, therefore, should not be applied to such systems.

  • No Tests associated with this Model
  • Tests are paired to Models through Test Results



Errors

  • No Errors associated with this Model




Download Dependency

This Model requires a Model Driver. Archives for the Model Driver MEAM_LAMMPS__MD_249792265679_001 appear below.


MEAM_LAMMPS__MD_249792265679_001.txz Tar+XZ Linux and OS X archive
MEAM_LAMMPS__MD_249792265679_001.zip Zip Windows archive

Wiki

Wiki is ready to accept new content.

Login to edit Wiki content