Jump to: Tests | Visualizers | Files | Wiki

MEAM_LAMMPS_SaLee_2008_FeTi__MO_260546967793_001

Interatomic potential for Iron (Fe), Titanium (Ti).
Use this Potential

Title
A single sentence description.
MEAM Potential for the Fe-Ti system developed by Sa and Lee (2008) v001
Description
A short description of the Model describing its key features including for example: type of model (pair potential, 3-body potential, EAM, etc.), modeled species (Ac, Ag, ..., Zr), intended purpose, origin, and so on.
A semi-empirical interatomic potential formalism, the second-nearest-neighbor modified embedded-atom method (2NN MEAM), has been applied to obtain interatomic potential for Fe–Ti system based on the previously developed potentials for pure Fe and Ti. The present potentials generally reproduce the fundamental physical properties of the Fe–Ti system accurately. The potential can be easily combined with already-developed MEAM potentials for binary carbide or nitride systems and can be used to describe Fe–(Ti,Nb)–(C,N) multicomponent systems.
Species
The supported atomic species.
Fe, Ti
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
None
Content Origin http://cmse.postech.ac.kr/home_2nnmeam
Contributor Hyo-Sun Jang
Maintainer Hyo-Sun Jang
Developer Inyoung Sa
Byeong-Joo Lee
Published on KIM 2021
How to Cite Click here to download this citation in BibTeX format.
Funding Not available
Short KIM ID
The unique KIM identifier code.
MO_260546967793_001
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
MEAM_LAMMPS_SaLee_2008_FeTi__MO_260546967793_001
DOI 10.25950/728b47a3
https://doi.org/10.25950/728b47a3
https://commons.datacite.org/doi.org/10.25950/728b47a3
KIM Item Type
Specifies whether this is a Portable Model (software implementation of an interatomic model); Portable Model with parameter file (parameter file to be read in by a Model Driver); Model Driver (software implementation of an interatomic model that reads in parameters).
Portable Model using Model Driver MEAM_LAMMPS__MD_249792265679_001
DriverMEAM_LAMMPS__MD_249792265679_001
KIM API Version2.2
Potential Type meam
Previous Version MEAM_LAMMPS_SaLee_2008_FeTi__MO_260546967793_000

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-species-supported-as-stated mandatory
The model supports all species it claims to support; see full description.
Results Files
P vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
P vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
F vc-dimer-continuity-c1 informational
The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.
Results Files
P vc-objectivity informational
Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.
Results Files
P vc-inversion-symmetry informational
Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.
Results Files
N/A vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files
P vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files
P vc-unit-conversion mandatory
The model is able to correctly convert its energy and/or forces to different unit sets; see full description.
Results Files


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Ti
Species: Fe


Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

Species: Fe
Species: Ti


Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Ti
Species: Fe


Dislocation Core Energies

This graph shows the dislocation core energy of a cubic crystal at zero temperature and pressure for a specific set of dislocation core cutoff radii. After obtaining the total energy of the system from conjugate gradient minimizations, non-singular, isotropic and anisotropic elasticity are applied to obtain the dislocation core energy for each of these supercells with different dipole distances. Graphs are generated for each species supported by the model.

(No matching species)

FCC Elastic Constants

This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Ti
Species: Fe


FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Fe
Species: Ti


FCC Stacking Fault Energies

This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Surface Energies

This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Fe
Species: Ti


Cubic Crystal Basic Properties Table

Species: Fe

Species: Ti





Cohesive energy versus lattice constant curve for monoatomic cubic lattices v003

Creators:
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/64cb38c5

This Test Driver uses LAMMPS to compute the cohesive energy of a given monoatomic cubic lattice (fcc, bcc, sc, or diamond) at a variety of lattice spacings. The lattice spacings range from a_min (=a_min_frac*a_0) to a_max (=a_max_frac*a_0) where a_0, a_min_frac, and a_max_frac are read from stdin (a_0 is typically approximately equal to the equilibrium lattice constant). The precise scaling and number of lattice spacings sampled between a_min and a_0 (a_0 and a_max) is specified by two additional parameters passed from stdin: N_lower and samplespacing_lower (N_upper and samplespacing_upper). Please see README.txt for further details.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Cohesive energy versus lattice constant curve for bcc Fe v004 view 6007
Cohesive energy versus lattice constant curve for bcc Ti v004 view 6326
Cohesive energy versus lattice constant curve for diamond Fe v004 view 5948
Cohesive energy versus lattice constant curve for diamond Ti v004 view 7657
Cohesive energy versus lattice constant curve for fcc Fe v004 view 7454
Cohesive energy versus lattice constant curve for fcc Ti v004 view 5868
Cohesive energy versus lattice constant curve for sc Fe v004 view 5908
Cohesive energy versus lattice constant curve for sc Ti v004 view 7215


Elastic constants for cubic crystals at zero temperature and pressure v006

Creators: Junhao Li and Ellad Tadmor
Contributor: tadmor
Publication Year: 2019
DOI: https://doi.org/10.25950/5853fb8f

Computes the cubic elastic constants for some common crystal types (fcc, bcc, sc, diamond) by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for bcc Fe at zero temperature v006 view 24368
Elastic constants for bcc Ti at zero temperature v006 view 26864
Elastic constants for fcc Fe at zero temperature v006 view 28754
Elastic constants for fcc Ti at zero temperature v006 view 24537
Elastic constants for sc Fe at zero temperature v006 view 25989
Elastic constants for sc Ti at zero temperature v006 view 25024


Equilibrium structure and energy for a crystal structure at zero temperature and pressure v000

Creators:
Contributor: ilia
Publication Year: 2023
DOI: https://doi.org/10.25950/53ef2ea4

Computes the equilibrium crystal structure and energy for an arbitrary crystal at zero temperature and applied stress by performing symmetry-constrained relaxation. The crystal structure is specified using the AFLOW prototype designation. Multiple sets of free parameters corresponding to the crystal prototype may be specified as initial guesses for structure optimization. No guarantee is made regarding the stability of computed equilibria, nor that any are the ground state.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium crystal structure and energy for FeTi in AFLOW crystal prototype A2B_hP12_194_ah_f v000 view 86083
Equilibrium crystal structure and energy for Fe in AFLOW crystal prototype A_cF4_225_a v000 view 132517
Equilibrium crystal structure and energy for Ti in AFLOW crystal prototype A_cF4_225_a v000 view 75092
Equilibrium crystal structure and energy for Fe in AFLOW crystal prototype A_cI2_229_a v000 view 72663
Equilibrium crystal structure and energy for Ti in AFLOW crystal prototype A_cI2_229_a v000 view 71633
Equilibrium crystal structure and energy for Fe in AFLOW crystal prototype A_hP2_194_c v000 view 66921
Equilibrium crystal structure and energy for Ti in AFLOW crystal prototype A_hP2_194_c v000 view 62242
Equilibrium crystal structure and energy for Ti in AFLOW crystal prototype A_hP3_191_ad v000 view 56712
Equilibrium crystal structure and energy for Fe in AFLOW crystal prototype A_tP28_136_f2ij v000 view 86430
Equilibrium crystal structure and energy for FeTi in AFLOW crystal prototype AB_cP2_221_a_b v000 view 80463


Relaxed energy as a function of tilt angle for a symmetric tilt grain boundary within a cubic crystal v003

Creators:
Contributor: brunnels
Publication Year: 2022
DOI: https://doi.org/10.25950/2c59c9d6

Computes grain boundary energy for a range of tilt angles given a crystal structure, tilt axis, and material.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Relaxed energy as a function of tilt angle for a 100 symmetric tilt grain boundary in bcc Fe v001 view 96412302
Relaxed energy as a function of tilt angle for a 110 symmetric tilt grain boundary in bcc Fe v001 view 170409858
Relaxed energy as a function of tilt angle for a 111 symmetric tilt grain boundary in bcc Fe v001 view 82428556
Relaxed energy as a function of tilt angle for a 112 symmetric tilt grain boundary in bcc Fe v001 view 442265937
Relaxed energy as a function of tilt angle for a 100 symmetric tilt grain boundary in fcc Fe v001 view 38597870
Relaxed energy as a function of tilt angle for a 110 symmetric tilt grain boundary in fcc Fe v001 view 754651588
Relaxed energy as a function of tilt angle for a 111 symmetric tilt grain boundary in fcc Fe v001 view 192471415
Relaxed energy as a function of tilt angle for a 112 symmetric tilt grain boundary in fcc Fe v001 view 493628691


Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure v007

Creators: Daniel S. Karls and Junhao Li
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/2765e3bf

Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium zero-temperature lattice constant for bcc Fe v007 view 20976
Equilibrium zero-temperature lattice constant for bcc Ti v007 view 21026
Equilibrium zero-temperature lattice constant for diamond Fe v007 view 21215
Equilibrium zero-temperature lattice constant for diamond Ti v007 view 22269
Equilibrium zero-temperature lattice constant for fcc Fe v007 view 20369
Equilibrium zero-temperature lattice constant for fcc Ti v007 view 21125
Equilibrium zero-temperature lattice constant for sc Fe v007 view 20419
Equilibrium zero-temperature lattice constant for sc Ti v007 view 20479


Equilibrium lattice constants for hexagonal bulk structures at zero temperature and pressure v005

Creators: Daniel S. Karls and Junhao Li
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/c339ca32

Calculates lattice constant of hexagonal bulk structures at zero temperature and pressure by using simplex minimization to minimize the potential energy.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium lattice constants for hcp Fe v005 view 323792
Equilibrium lattice constants for hcp Ti v005 view 297455


ElasticConstantsCubic__TD_011862047401_006

ElasticConstantsHexagonal__TD_612503193866_004

EquilibriumCrystalStructure__TD_457028483760_000

GrainBoundaryCubicCrystalSymmetricTiltRelaxedEnergyVsAngle__TD_410381120771_002

LinearThermalExpansionCoeffCubic__TD_522633393614_001

SurfaceEnergyCubicCrystalBrokenBondFit__TD_955413365818_004
Test Error Categories Link to Error page
Broken-bond fit of high-symmetry surface energies in bcc Fe v004 other view

No Driver
Verification Check Error Categories Link to Error page
ForcesNumerDeriv__VC_710586816390_003 other view
PeriodicitySupport__VC_895061507745_004 other view




This Model requires a Model Driver. Archives for the Model Driver MEAM_LAMMPS__MD_249792265679_001 appear below.


MEAM_LAMMPS__MD_249792265679_001.txz Tar+XZ Linux and OS X archive
MEAM_LAMMPS__MD_249792265679_001.zip Zip Windows archive
Wiki is ready to accept new content.

Login to edit Wiki content