Jump to: Tests | Visualizers | Files | Wiki

MEAM_LAMMPS_JangKimLee_2018_ZnMg__MO_474962707676_000

Interatomic potential for Magnesium (Mg), Zinc (Zn).
Use this Potential

Title
A single sentence description.
MEAM Potential for the Mg-Zn system developed by Jang et al. (2018) v000
Description
A short description of the Model describing its key features including for example: type of model (pair potential, 3-body potential, EAM, etc.), modeled species (Ac, Ag, ..., Zr), intended purpose, origin, and so on.
Interatomic potentials for Mg–Zn binary system has been developed on the basis of the second nearest-neighbor modified embedded-atom method formalism. The potential reproduce the alloy behavior (thermodynamic, structural, and elastic properties of compounds and solution phases) of Mg-Zn alloys well in good agreement with experiments, first-principles and CALPHAD. In the original paper (Jang et al, Calphad, 60, 2018), the applicability of the developed potentials to atom-scale investigations on the slip behavior of Mg-Zn alloys is also demonstrated by showing that the calculated effects of Zn on the general stacking fault energy on the basal, prismatic and pyramidal planes are consistent with first-principles calculations.
Species
The supported atomic species.
Mg, Zn
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
None
Content Origin http://cmse.postech.ac.kr/home_2nnmeam
Contributor Hyeon-Seok Do
Maintainer Hyeon-Seok Do
Developer Hyo-Sun Jang
Kyeong-Min Kim
Byeong-Joo Lee
Published on KIM 2021
How to Cite Click here to download this citation in BibTeX format.
Funding Not available
Short KIM ID
The unique KIM identifier code.
MO_474962707676_000
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
MEAM_LAMMPS_JangKimLee_2018_ZnMg__MO_474962707676_000
DOI 10.25950/5543ee36
https://doi.org/10.25950/5543ee36
https://commons.datacite.org/doi.org/10.25950/5543ee36
KIM Item Type
Specifies whether this is a Portable Model (software implementation of an interatomic model); Portable Model with parameter file (parameter file to be read in by a Model Driver); Model Driver (software implementation of an interatomic model that reads in parameters).
Portable Model using Model Driver MEAM_LAMMPS__MD_249792265679_000
DriverMEAM_LAMMPS__MD_249792265679_000
KIM API Version2.2
Potential Type meam

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-species-supported-as-stated mandatory
The model supports all species it claims to support; see full description.
Results Files
P vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
P vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
A vc-forces-numerical-derivative consistency
Forces computed by the model agree with numerical derivatives of the energy; see full description.
Results Files
F vc-dimer-continuity-c1 informational
The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.
Results Files
P vc-objectivity informational
Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.
Results Files
P vc-inversion-symmetry informational
Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.
Results Files
P vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files
P vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files
P vc-unit-conversion mandatory
The model is able to correctly convert its energy and/or forces to different unit sets; see full description.
Results Files


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Zn
Species: Mg


Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

Species: Mg
Species: Zn


Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Mg
Species: Zn


Dislocation Core Energies

This graph shows the dislocation core energy of a cubic crystal at zero temperature and pressure for a specific set of dislocation core cutoff radii. After obtaining the total energy of the system from conjugate gradient minimizations, non-singular, isotropic and anisotropic elasticity are applied to obtain the dislocation core energy for each of these supercells with different dipole distances. Graphs are generated for each species supported by the model.

(No matching species)

FCC Elastic Constants

This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Mg
Species: Zn


FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Mg
Species: Zn


FCC Stacking Fault Energies

This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Surface Energies

This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Zn
Species: Mg


Cubic Crystal Basic Properties Table

Species: Mg

Species: Zn





Cohesive energy versus lattice constant curve for monoatomic cubic lattices v003

Creators:
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/64cb38c5

This Test Driver uses LAMMPS to compute the cohesive energy of a given monoatomic cubic lattice (fcc, bcc, sc, or diamond) at a variety of lattice spacings. The lattice spacings range from a_min (=a_min_frac*a_0) to a_max (=a_max_frac*a_0) where a_0, a_min_frac, and a_max_frac are read from stdin (a_0 is typically approximately equal to the equilibrium lattice constant). The precise scaling and number of lattice spacings sampled between a_min and a_0 (a_0 and a_max) is specified by two additional parameters passed from stdin: N_lower and samplespacing_lower (N_upper and samplespacing_upper). Please see README.txt for further details.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Cohesive energy versus lattice constant curve for bcc Mg v003 view 3412
Cohesive energy versus lattice constant curve for bcc Zn v003 view 3412
Cohesive energy versus lattice constant curve for diamond Mg v003 view 3601
Cohesive energy versus lattice constant curve for diamond Zn v003 view 3506
Cohesive energy versus lattice constant curve for fcc Mg v003 view 3254
Cohesive energy versus lattice constant curve for fcc Zn v003 view 3064
Cohesive energy versus lattice constant curve for sc Mg v003 view 3222
Cohesive energy versus lattice constant curve for sc Zn v003 view 3538


Elastic constants for cubic crystals at zero temperature and pressure v006

Creators: Junhao Li and Ellad Tadmor
Contributor: tadmor
Publication Year: 2019
DOI: https://doi.org/10.25950/5853fb8f

Computes the cubic elastic constants for some common crystal types (fcc, bcc, sc, diamond) by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for bcc Mg at zero temperature v006 view 4328
Elastic constants for bcc Zn at zero temperature v006 view 3885
Elastic constants for diamond Zn at zero temperature v001 view 16900
Elastic constants for fcc Mg at zero temperature v006 view 10330
Elastic constants for fcc Zn at zero temperature v006 view 3917
Elastic constants for sc Mg at zero temperature v006 view 16268
Elastic constants for sc Zn at zero temperature v006 view 3443


Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure v007

Creators: Daniel S. Karls and Junhao Li
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/2765e3bf

Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium zero-temperature lattice constant for bcc Mg v007 view 1801
Equilibrium zero-temperature lattice constant for bcc Zn v007 view 1801
Equilibrium zero-temperature lattice constant for diamond Mg v007 view 2116
Equilibrium zero-temperature lattice constant for diamond Zn v007 view 1895
Equilibrium zero-temperature lattice constant for fcc Mg v007 view 2559
Equilibrium zero-temperature lattice constant for fcc Zn v007 view 2590
Equilibrium zero-temperature lattice constant for sc Mg v007 view 2401
Equilibrium zero-temperature lattice constant for sc Zn v007 view 2085


Equilibrium lattice constants for hexagonal bulk structures at zero temperature and pressure v005

Creators: Daniel S. Karls and Junhao Li
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/c339ca32

Calculates lattice constant of hexagonal bulk structures at zero temperature and pressure by using simplex minimization to minimize the potential energy.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium lattice constants for hcp Mg v005 view 33484
Equilibrium lattice constants for hcp Zn v005 view 42108





This Model requires a Model Driver. Archives for the Model Driver MEAM_LAMMPS__MD_249792265679_000 appear below.


MEAM_LAMMPS__MD_249792265679_000.txz Tar+XZ Linux and OS X archive
MEAM_LAMMPS__MD_249792265679_000.zip Zip Windows archive
Wiki is ready to accept new content.

Login to edit Wiki content