Title
A single sentence description.
|
EAM potential for Cu-Zr developed by Mendelev (2019) v000 |
---|---|
Description
A short description of the Model describing its key features including for example: type of model (pair potential, 3-body potential, EAM, etc.), modeled species (Ac, Ag, ..., Zr), intended purpose, origin, and so on.
|
Improved version of the Mendelev, Kramer and Ott (2009) potential archived in OpenKIM as EAM_Dynamo_MendelevKramerOtt_2009_CuZr__MO_600021860456_005. It was designed to fix the problem with artificially stable Laves phases. The potential is suitable to study the vitrification and glass properties. |
Species
The supported atomic species.
| Cu, Zr |
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
|
None |
Content Origin | The analytical expressions implemented in the model were received from M. I. Mendelev (July 2020). |
Content Other Locations | https://www.ctcms.nist.gov/potentials/system/Cu/#Cu-Zr |
Contributor |
Ellad B. Tadmor |
Maintainer |
Ellad B. Tadmor |
Developer | Mikhail I. Mendelev |
Published on KIM | 2020 |
How to Cite |
This Model is archived in OpenKIM [1-3]. [1] Mendelev MI. EAM potential for Cu-Zr developed by Mendelev (2019) v000. OpenKIM; 2020. doi:10.25950/e3229f77 [2] Tadmor EB, Elliott RS, Sethna JP, Miller RE, Becker CA. The potential of atomistic simulations and the Knowledgebase of Interatomic Models. JOM. 2011;63(7):17. doi:10.1007/s11837-011-0102-6 [3] Elliott RS, Tadmor EB. Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API). OpenKIM; 2011. doi:10.25950/ff8f563a Click here to download the above citation in BibTeX format. |
Funding | Not available |
Short KIM ID
The unique KIM identifier code.
| MO_945018740343_000 |
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
| EAM_Mendelev_2019_CuZr__MO_945018740343_000 |
DOI |
10.25950/e3229f77 https://doi.org/10.25950/e3229f77 https://commons.datacite.org/doi.org/10.25950/e3229f77 |
KIM Item Type
Specifies whether this is a Portable Model (software implementation of an interatomic model); Portable Model with parameter file (parameter file to be read in by a Model Driver); Model Driver (software implementation of an interatomic model that reads in parameters).
| Portable Model |
KIM API Version | 2.0 |
Potential Type | eam |
Programming Language(s)
The programming languages used in the code and the percentage of the code written in each one. "N/A" means "not applicable" and refers to model parameterizations which only include parameter tables and have no programming language.
| 100.00% Fortran |
Grade | Name | Category | Brief Description | Full Results | Aux File(s) |
---|---|---|---|---|---|
P | vc-species-supported-as-stated | mandatory | The model supports all species it claims to support; see full description. |
Results | Files |
P | vc-periodicity-support | mandatory | Periodic boundary conditions are handled correctly; see full description. |
Results | Files |
P | vc-permutation-symmetry | mandatory | Total energy and forces are unchanged when swapping atoms of the same species; see full description. |
Results | Files |
B | vc-forces-numerical-derivative | consistency | Forces computed by the model agree with numerical derivatives of the energy; see full description. |
Results | Files |
P | vc-dimer-continuity-c1 | informational | The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description. |
Results | Files |
P | vc-objectivity | informational | Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description. |
Results | Files |
P | vc-inversion-symmetry | informational | Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description. |
Results | Files |
P | vc-memory-leak | informational | The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description. |
Results | Files |
P | vc-thread-safe | mandatory | The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description. |
Results | Files |
N/A | vc-unit-conversion | mandatory | The model is able to correctly convert its energy and/or forces to different unit sets; see full description. |
Results | Files |
This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.
This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
This graph shows the dislocation core energy of a cubic crystal at zero temperature and pressure for a specific set of dislocation core cutoff radii. After obtaining the total energy of the system from conjugate gradient minimizations, non-singular, isotropic and anisotropic elasticity are applied to obtain the dislocation core energy for each of these supercells with different dipole distances. Graphs are generated for each species supported by the model.
(No matching species)This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
(No matching species)This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Cohesive energy versus lattice constant curve for bcc Cu v004 | view | 3131 | |
Cohesive energy versus lattice constant curve for bcc Zr v004 | view | 1880 | |
Cohesive energy versus lattice constant curve for diamond Cu v004 | view | 2162 | |
Cohesive energy versus lattice constant curve for diamond Zr v004 | view | 1910 | |
Cohesive energy versus lattice constant curve for fcc Cu v004 | view | 2758 | |
Cohesive energy versus lattice constant curve for fcc Zr v004 | view | 1671 | |
Cohesive energy versus lattice constant curve for sc Cu v004 | view | 2534 | |
Cohesive energy versus lattice constant curve for sc Zr v004 | view | 1914 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Elastic constants for CuZr in AFLOW crystal prototype A10B7_oC68_64_f2g_adef at zero temperature and pressure v000 | view | 266979 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Elastic constants for bcc Cu at zero temperature v006 | view | 5255 | |
Elastic constants for bcc Zr at zero temperature v006 | view | 3127 | |
Elastic constants for fcc Cu at zero temperature v006 | view | 20278 | |
Elastic constants for fcc Zr at zero temperature v006 | view | 12090 | |
Elastic constants for sc Cu at zero temperature v006 | view | 4578 | |
Elastic constants for sc Zr at zero temperature v006 | view | 17377 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Equilibrium crystal structure and energy for Cu in AFLOW crystal prototype A_cF4_225_a v001 | view | 77154 | |
Equilibrium crystal structure and energy for Cu in AFLOW crystal prototype A_cI2_229_a v001 | view | 71706 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Relaxed energy as a function of tilt angle for a 100 symmetric tilt grain boundary in fcc Cu v001 | view | 21029663 | |
Relaxed energy as a function of tilt angle for a 110 symmetric tilt grain boundary in fcc Cu v001 | view | 126406385 | |
Relaxed energy as a function of tilt angle for a 111 symmetric tilt grain boundary in fcc Cu v001 | view | 37872518 | |
Relaxed energy as a function of tilt angle for a 112 symmetric tilt grain boundary in fcc Cu v001 | view | 238334686 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Equilibrium zero-temperature lattice constant for bcc Cu v007 | view | 1483 | |
Equilibrium zero-temperature lattice constant for bcc Zr v007 | view | 1419 | |
Equilibrium zero-temperature lattice constant for diamond Cu v007 | view | 1934 | |
Equilibrium zero-temperature lattice constant for diamond Zr v007 | view | 1934 | |
Equilibrium zero-temperature lattice constant for fcc Cu v007 | view | 1967 | |
Equilibrium zero-temperature lattice constant for fcc Zr v007 | view | 1967 | |
Equilibrium zero-temperature lattice constant for sc Cu v007 | view | 1805 | |
Equilibrium zero-temperature lattice constant for sc Zr v007 | view | 1838 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Equilibrium lattice constants for hcp Cu v005 | view | 81726 | |
Equilibrium lattice constants for hcp Zr v005 | view | 58933 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Linear thermal expansion coefficient of fcc Cu at 293.15 K under a pressure of 0 MPa v001 | view | 54996027 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Phonon dispersion relations for fcc Cu v004 | view | 66735 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Stacking and twinning fault energies for fcc Cu v002 | view | 83991944 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Broken-bond fit of high-symmetry surface energies in fcc Cu v004 | view | 88818 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Monovacancy formation energy and relaxation volume for fcc Cu | view | 1059841 | |
Monovacancy formation energy and relaxation volume for hcp Zr | view | 502754 |
Test | Test Results | Link to Test Results page | Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.
Measured in Millions of Whetstone Instructions (MWI) |
---|---|---|---|
Vacancy formation and migration energy for fcc Cu | view | 3184087 | |
Vacancy formation and migration energy for hcp Zr | view | 3248578 |
Test | Error Categories | Link to Error page |
---|---|---|
Elastic constants for diamond Cu at zero temperature v001 | other | view |
Elastic constants for diamond Zr at zero temperature v001 | other | view |
Test | Error Categories | Link to Error page |
---|---|---|
Elastic constants for hcp Cu at zero temperature v004 | other | view |
Elastic constants for hcp Zr at zero temperature v004 | other | view |
Test | Error Categories | Link to Error page |
---|---|---|
Equilibrium crystal structure and energy for Zr in AFLOW crystal prototype A_hP2_194_c v000 | other | view |
Test | Error Categories | Link to Error page |
---|---|---|
Stacking and twinning fault energies for fcc Cu v002 | other | view |
EAM_Mendelev_2019_CuZr__MO_945018740343_000.txz | Tar+XZ | Linux and OS X archive |
EAM_Mendelev_2019_CuZr__MO_945018740343_000.zip | Zip | Windows archive |