Jump to: Tests | Visualizers | Files | Wiki

MSMEAM_Gibson_Ti__MO_309653492217_000

Title
A single sentence description.
Titanium model for multi-state modified embedded atom method
Description
A short description of the Model describing its key features including for example: type of model (pair potential, 3-body potential, EAM, etc.), modeled species (Ac, Ag, ..., Zr), intended purpose, origin, and so on.
Titanium model for multi-state modfied embedded atom method model driver. Fitted to first principles VASP data set that includes seven variable coordinations and two transformation paths. Ti_pv POTCAR was utilized to generate first princples VASP data.
Species
The supported atomic species.
Ti
Disclaimer
A short statement of applicability which will accompany any results computed using it. A developer can use the disclaimer to inform users of the intended use of this KIM Item.
The cutoff radius, in Å, can be varied by the user via modification of the value on line 4 within the Ti.meatable model file. The recommended range for the cutoff radius is between a minimum of 5.843 Ångstroms (two times the lattice scaling constant) and maximum of 11.686 Ångstroms. (four times the lattice scaling constant). The lattice and energy scaling constants are given as the third and fourth values, respectively, on line five of the Ti.meatable model file.
Contributor joshgibson886
Maintainer joshgibson886
Author Joshua Gibson
Publication Year 2016
Item Citation Click here to download a citation in BibTeX format.
Short KIM ID
The unique KIM identifier code.
MO_309653492217_000
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
MSMEAM_Gibson_Ti__MO_309653492217_000
Citable Link https://openkim.org/cite/MO_309653492217_000
KIM Item Type
Specifies whether this is a Stand-alone Model (software implementation of an interatomic model); Parameterized Model (parameter file to be read in by a Model Driver); Model Driver (software implementation of an interatomic model that reads in parameters).
Parameterized Model using Model Driver MSMEAM_Dynamo_Gibson_Baskes__MD_080127949983_000
DriverMSMEAM_Dynamo_Gibson_Baskes__MD_080127949983_000
KIM API Version1.6

Verification Check Dashboard

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-species-supported-as-stated mandatory
The model supports all species it claims to support; see full description.
Results Files
P vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
P vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
C vc-forces-numerical-derivative consistency
Forces computed by the model agree with numerical derivatives of the energy; see full description.
Results Files
F vc-dimer-continuity-c1 informational
The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.
Results Files
F vc-objectivity informational
Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.
Results Files
P vc-inversion-symmetry informational
Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.
Results Files
P vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files
F vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files

Visualizers (in-page)


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

Click on any thumbnail to get a full size image.



Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

Species: Ti

Click on any thumbnail to get a full size image.



Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

Click on any thumbnail to get a full size image.



FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

Click on any thumbnail to get a full size image.



SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

Click on any thumbnail to get a full size image.



Cubic Crystal Basic Properties Table

Species: Ti



Tests

CohesiveEnergyVsLatticeConstant__TD_554653289799_001
This Test Driver uses LAMMPS to compute the cohesive energy of a given monoatomic cubic
lattice (fcc, bcc, sc, or diamond) at a variety of lattice spacings. The lattice spacings
range from a_min (=a_min_frac*a_0) to a_max (=a_max_frac*a_0) where a_0, a_min_frac, and
a_max_frac are read from stdin (a_0 is typically approximately equal to the equilibrium lattice
constant). The precise scaling and number of lattice spacings sampled between a_min and a_0
(a_0 and a_max) is specified by two additional parameters passed from stdin: N_lower and
samplespacing_lower (N_upper and samplespacing_upper). Please see README.txt for further details.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
CohesiveEnergyVsLatticeConstant_bcc_Ti__TE_269215961393_001 view 53958
CohesiveEnergyVsLatticeConstant_diamond_Ti__TE_804305295553_001 view 59201
CohesiveEnergyVsLatticeConstant_fcc_Ti__TE_406056102498_001 view 63150
CohesiveEnergyVsLatticeConstant_sc_Ti__TE_376517511478_001 view 8238
ElasticConstantsCubic__TD_011862047401_003
Measures the cubic elastic constants for some common crystal types (fcc, bcc, sc) by calculating the hessian of the energy density with respect to strain. Error estimate is reported due to the numerical differentiation.

This version fixes the number of repeats in the species key.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
ElasticConstantsCubic_bcc_Ti__TE_530002460811_003 view 11426
ElasticConstantsCubic_fcc_Ti__TE_944384516355_003 view 18035
ElasticConstantsCubic_sc_Ti__TE_457585945605_003 view 9121
ElasticConstantsHexagonal__TD_612503193866_002
Measures the hexagonal elastic constants for hcp structure by calculating the hessian of the energy density with respect to strain. Error estimate is reported due to the numerical differentiation.

This version fixes the number of repeats in the species key and the coordinate of the 2nd atom in the normed basis.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
ElasticConstantsHexagonal_hcp_Ti__TE_148372627069_002 view 8003
LatticeConstantHexagonalEnergy__TD_942334626465_003
Calculates lattice constant by minimizing energy function.

This version fixes the output format problems in species and stress, and adds support for PURE and OPBC neighbor lists. The cell used for calculation is switched from a hexagonal one to an orthorhombic one to comply with the requirement of OPBC.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
LatticeConstantHexagonalEnergy_hcp_Ti__TE_433102354515_003 view 315000
VacancyFormationMigration__TD_554849987965_000
Computes the monovacancy formation and migration energies for cubic and hcp monoatomic crystals.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
VacancyFormationMigration_hcp_Ti__TE_626277981382_000 view 73236637





Download Dependency

This Model requires a Model Driver. Archives for the Model Driver MSMEAM_Dynamo_Gibson_Baskes__MD_080127949983_000 appear below.


MSMEAM_Dynamo_Gibson_Baskes__MD_080127949983_000.txz Tar+XZ Linux and OS X archive
MSMEAM_Dynamo_Gibson_Baskes__MD_080127949983_000.zip Zip Windows archive

Wiki

Wiki is ready to accept new content.

Login to edit Wiki content