Jump to: Tests | Visualizers | Files | Wiki

Morse_Shifted_GirifalcoWeizer_1959MedCutoff_Pb__MO_958424213898_003

Title
A single sentence description.
Morse potential (shifted) for Pb by Girifalco and Weizer (1959) using a medium-accuracy cutoff distance v003
Description
A short description of the Model describing its key features including for example: type of model (pair potential, 3-body potential, EAM, etc.), modeled species (Ac, Ag, ..., Zr), intended purpose, origin, and so on.
This is a Pb Morse Model Parameterization by Girifalco and Weizer (1959) using a medium-accuracy cutoff distance. The Morse parameters were calculated using experimental values for the energy of vaporization, the lattice constant, and the compressibility. The equation of state and the elastic constants which were computed using the Morse parameters, agreed with experiment for both face-centered and body-centered cubic metals. All stability conditions were also satisfied for both the face-centered and the body-centered metals. This shows that the Morse function can be applied validly to problems involving any type of deformation of the cubic metals.
Species
The supported atomic species.
Pb
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
None
Contributor Ryan
Maintainer Ryan
Author Ryan S. Elliott
Publication Year 2019
Item Citation

This Model originally published in [1] is archived in OpenKIM [2-5].

[1] Girifalco LA, Weizer VG. Application of the Morse Potential Function to Cubic Metals. Physical Review. 1959May;114(3):687–90. doi:10.1103/PhysRev.114.687

[2] Elliott RS. Morse potential (shifted) for Pb by Girifalco and Weizer (1959) using a medium-accuracy cutoff distance v003. OpenKIM; 2019. doi:10.25950/2b7c8c7f

[3] Elliott RS. Morse pair potential shifted to zero energy at cutoff separation v003. OpenKIM; 2019. doi:10.25950/2d6a3dd7

[4] Tadmor EB, Elliott RS, Sethna JP, Miller RE, Becker CA. The potential of atomistic simulations and the Knowledgebase of Interatomic Models. JOM. 2011;63(7):17. doi:10.1007/s11837-011-0102-6

[5] Elliott RS, Tadmor EB. Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API). OpenKIM; 2011. doi:10.25950/ff8f563a

Click here to download the above citation in BibTeX format.
Short KIM ID
The unique KIM identifier code.
MO_958424213898_003
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
Morse_Shifted_GirifalcoWeizer_1959MedCutoff_Pb__MO_958424213898_003
DOI 10.25950/2b7c8c7f
https://doi.org/10.25950/2b7c8c7f
https://search.datacite.org/works/10.25950/2b7c8c7f
KIM Item Type
Specifies whether this is a Portable Model (software implementation of an interatomic model); Portable Model with parameter file (parameter file to be read in by a Model Driver); Model Driver (software implementation of an interatomic model that reads in parameters).
Portable Model using Model Driver Morse_Shifted__MD_552566534109_003
DriverMorse_Shifted__MD_552566534109_003
KIM API Version2.0
Potential Type morse
Previous Version Morse_Shifted_GirifalcoWeizer_1959MedCutoff_Pb__MO_958424213898_002

Visualizers (in-page)


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

(No matching species)

Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Elastic Constants

This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Stacking Fault Energies

This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Surface Energies

This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

Cubic Crystal Basic Properties Table

Species: Pb



Tests

  • No Tests associated with this Model
  • Tests are paired to Models through Test Results



Errors

  • No Errors associated with this Model




Download Dependency

This Model requires a Model Driver. Archives for the Model Driver Morse_Shifted__MD_552566534109_003 appear below.


Morse_Shifted__MD_552566534109_003.txz Tar+XZ Linux and OS X archive
Morse_Shifted__MD_552566534109_003.zip Zip Windows archive

Wiki

Wiki is ready to accept new content.

Login to edit Wiki content