Jump to: Tests | Visualizers | Files | Wiki

Pair_Morse_Modified_MacDonaldMacDonald_Cu__MO_034823476734_000

Interatomic potential for Copper (Cu).
Use this Potential

Title
A single sentence description.
Modified Morse pair potential for copper due to MacDonald and MacDonald
Description
A short description of the Model describing its key features including for example: type of model (pair potential, 3-body potential, EAM, etc.), modeled species (Ac, Ag, ..., Zr), intended purpose, origin, and so on.
This is a model of modified Morse potential for copper (Cu). phi(r)=(D_0)/(2B-1) * [ e^(-2A*sqrt(B)(r-r_0)) - 2B e^(-A(r-r_0)/sqrt(B)) ].
The modification was introduced to improve agreement with experimental values for thermal expansion of face-centered cubic (fcc) crystals. This is accomplished by adjusting phi'', because it is largely responsible for the slope of thermal expansion as a function of temperature. D_0 and A are identical to the standard Morse potential when r=r_0. B is determined by the requirement that the thermal expansion should fit the experimental results near Debye temperature. The standard Morse potential is recovered for B = 1. The cutoff is set to a large value -- 1000 angstrom.
Species
The supported atomic species.
Cu
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
None
Contributor Mwen
Maintainer Mwen
Creator Mingjian Wen
Publication Year 2015
Item Citation

This Model originally published in [1] is archived in OpenKIM [2-4].

[1] MacDonald RA, MacDonald WM. Thermodynamic properties of fcc metals at high temperatures. Physical Review B. 1981Aug;24(4):1715–24. doi:10.1103/PhysRevB.24.1715 — (Primary Source) A primary source is a reference directly related to the item documenting its development, as opposed to other sources that are provided as background information.

[2] Modified Morse pair potential for copper due to MacDonald and MacDonald. OpenKIM; 2015.

[3] Tadmor EB, Elliott RS, Sethna JP, Miller RE, Becker CA. The potential of atomistic simulations and the Knowledgebase of Interatomic Models. JOM. 2011;63(7):17. doi:10.1007/s11837-011-0102-6

[4] Elliott RS, Tadmor EB. Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API). OpenKIM; 2011. doi:10.25950/ff8f563a

Click here to download the above citation in BibTeX format.
Funding Not available
Short KIM ID
The unique KIM identifier code.
MO_034823476734_000
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
Pair_Morse_Modified_MacDonaldMacDonald_Cu__MO_034823476734_000
Citable Link https://openkim.org/cite/MO_034823476734_000
KIM Item Type
Specifies whether this is a Portable Model (software implementation of an interatomic model); Portable Model with parameter file (parameter file to be read in by a Model Driver); Model Driver (software implementation of an interatomic model that reads in parameters).
Portable Model
KIM API Version1.6
Potential Type morse
Programming Language(s)
The programming languages used in the code and the percentage of the code written in each one. "N/A" means "not applicable" and refers to model parameterizations which only include parameter tables and have no programming language.
100.00% C

Verification Check Dashboard

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-species-supported-as-stated mandatory
The model supports all species it claims to support; see full description.
Results Files
P vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
N/A vc-forces-numerical-derivative consistency
Forces computed by the model agree with numerical derivatives of the energy; see full description.
Results Files
P vc-dimer-continuity-c1 informational
The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.
Results Files
P vc-objectivity informational
Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.
Results Files
P vc-inversion-symmetry informational
Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.
Results Files
P vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files

Visualizers (in-page)


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

(No matching species)

Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Elastic Constants

This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Stacking Fault Energies

This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Surface Energies

This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

Cubic Crystal Basic Properties Table

Species: Cu



Tests



Classical and first strain gradient elastic constants for simple lattices

Creators: Nikhil Chandra Admal
Contributor: Admal
Publication Year: 2016
DOI: https://doi.org/

The isothermal classical and first strain gradient elastic constants for a crystal at 0 K and zero stress.
Test Test Results Link to Test Results page Benchmark time
Usertime muliplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Classical and first strain gradient elastic constants for fcc copper view 276


Errors

CohesiveEnergyVsLatticeConstant__TD_554653289799_003

ElasticConstantsCubic__TD_011862047401_006

ElasticConstantsHexagonal__TD_612503193866_004
Test Error Categories Link to Error page
Elastic constants for hcp Cu at zero temperature v004 mismatch view

GrainBoundaryCubicCrystalSymmetricTiltRelaxedEnergyVsAngle__TD_410381120771_002

LatticeConstantCubicEnergy__TD_475411767977_007

LatticeConstantHexagonalEnergy__TD_942334626465_005
Test Error Categories Link to Error page
Equilibrium lattice constants for hcp Cu v005 mismatch view

LatticeInvariantShearPathCubicCrystalCBKIM__TD_083627594945_001

LinearThermalExpansionCoeffCubic__TD_522633393614_001

PhononDispersionCurve__TD_530195868545_004
Test Error Categories Link to Error page
Phonon dispersion relations for fcc Cu v004 mismatch view

StackingFaultFccCrystal__TD_228501831190_002
Test Error Categories Link to Error page
Stacking and twinning fault energies for fcc Cu v002 mismatch view

SurfaceEnergyCubicCrystalBrokenBondFit__TD_955413365818_004
Test Error Categories Link to Error page
Broken-bond fit of high-symmetry surface energies in fcc Cu v004 mismatch view

No Driver



Wiki

Wiki is ready to accept new content.

Login to edit Wiki content