Jump to: Tests | Visualizers | Files | Wiki

Sim_LAMMPS_ADP_ApostolMishin_2011_AlCu__SM_667696763561_000

Interatomic potential for Aluminum (Al), Copper (Cu).
Use this Potential

Title
A single sentence description.
LAMMPS ADP potential for Al-Cu developed by Apostol and Mishin (2011) v000
Citations

This panel presents the list of papers that cite the interatomic potential whose page you are on (by its primary sources given below in "How to Cite").

Articles marked by the green star have been determined to have used the potential in computations (as opposed to only citing it as background information) by a machine learning (ML) algorithm developed by the KIM Team that analyzes the full text of the papers. Articles that do not use it are marked with a null symbol, and in cases where no information is available a question mark is shown.

The full text of the articles used to train the ML algorithm is provided by the Allen Institute for AI through the Semantic Scholar project.

The word cloud to the right is built from the abstracts of the primary sources and using papers to give a sense of the types of physical phenomena to which this interatomic potential is applied.

IMPORTANT NOTE: Usage can only be determined for articles for which Semantic Scholar can provide OpenKIM with the full text. Where this is not the case, we ask the community for help in determining usage. If you know whether an article did or did not use a potential, let us know by clicking the cloud icon by the article and completing a one question form.

The word cloud indicates applications of this Potential. The bar chart shows citations per year of this Potential.

Help us to determine which of the papers that cite this potential actually used it to perform calculations. If you know, click the  .
Description An angular-dependent interatomic potential has been developed for the Al-Cu system based on existing embedded-atom method potentials for Al and Cu and fitting of the cross-interaction functions to experimental and first-principles data. The potential reproduces lattice parameters, formation energies, and elastic constants of the θ and θ′ phases of this system. It predicts the θ′ phase to be more stable than θ at 0 K but to become less stable at hight temperatures due to vibrational entropy. The temperate and entropy of this phase transformation are in good agreement with previous first-principles calculations [C. Wolverton and V. Ozoliņš, Phys. Rev. Lett. 86, 5518 (2001)]. The potential provides a reasonable description of the phase stability across the Al-Cu phase diagram, dilute heats of solution, and other thermodynamic properties. It has also been tested for generalized stacking fault energies in the presence of a copper layer embedded in Al. This configuration bears some resemblance to Guinier-Preston zones that strengthen Al-Cu alloys. The trends predicted by the potential for uniform shearing of this configuration are in agreement with results of first-principles density-functional calculations performed in this work. The potential is expected to be suitable for atomistic simulations of precipitation hardening of Al-Cu alloys. Notes: Prof. Mishin requested the following be noted: There was a typing error in the original ADP paper (Y. Mishin, et al., Acta Mat. 53, 4029 (2005)). More information and a correction can be found in the FAQ (https://www.ctcms.nist.gov/potentials/system/Al/faq.html#ADP).
Species
The supported atomic species.
Al, Cu
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
None
Content Origin NIST IPRP (https://www.ctcms.nist.gov/potentials/Al.html#Al-Cu)
Contributor Ellad B. Tadmor
Maintainer Ellad B. Tadmor
Published on KIM 2019
How to Cite

This Simulator Model originally published in [1] is archived in OpenKIM [2-4].

[1] Apostol F, Mishin Y. Interatomic potential for the Al-Cu system. Physical Review B. 2011Feb;83(5):054116. doi:10.1103/PhysRevB.83.054116 — (Primary Source) A primary source is a reference directly related to the item documenting its development, as opposed to other sources that are provided as background information.

[2] LAMMPS ADP potential for Al-Cu developed by Apostol and Mishin (2011) v000. OpenKIM; 2019. doi:10.25950/acf55448

[3] Tadmor EB, Elliott RS, Sethna JP, Miller RE, Becker CA. The potential of atomistic simulations and the Knowledgebase of Interatomic Models. JOM. 2011;63(7):17. doi:10.1007/s11837-011-0102-6

[4] Elliott RS, Tadmor EB. Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API). OpenKIM; 2011. doi:10.25950/ff8f563a

Click here to download the above citation in BibTeX format.
Funding Not available
Short KIM ID
The unique KIM identifier code.
SM_667696763561_000
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
Sim_LAMMPS_ADP_ApostolMishin_2011_AlCu__SM_667696763561_000
DOI 10.25950/acf55448
https://doi.org/10.25950/acf55448
https://search.datacite.org/works/10.25950/acf55448
KIM Item TypeSimulator Model
KIM API Version2.1
Simulator Name
The name of the simulator as defined in kimspec.edn.
LAMMPS
Potential Type adp
Simulator Potential adp
Programming Language(s)
The programming languages used in the code and the percentage of the code written in each one.
100.00% Tcl

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-species-supported-as-stated mandatory
The model supports all species it claims to support; see full description.
Results Files
P vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
P vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
B vc-forces-numerical-derivative consistency
Forces computed by the model agree with numerical derivatives of the energy; see full description.
Results Files
F vc-dimer-continuity-c1 informational
The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.
Results Files
P vc-objectivity informational
Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.
Results Files
P vc-inversion-symmetry informational
Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.
Results Files
P vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files
N/A vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Al
Species: Cu


Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

Species: Cu
Species: Al


Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Cu
Species: Al


FCC Elastic Constants

This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Al
Species: Cu


FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Cu
Species: Al


FCC Stacking Fault Energies

This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Cu
Species: Al


FCC Surface Energies

This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Al
Species: Cu


SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Cu
Species: Al


Cubic Crystal Basic Properties Table

Species: Al

Species: Cu





Cohesive energy versus lattice constant curve for monoatomic cubic lattices v003

Creators: Daniel S. Karls
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/64cb38c5

This Test Driver uses LAMMPS to compute the cohesive energy of a given monoatomic cubic lattice (fcc, bcc, sc, or diamond) at a variety of lattice spacings. The lattice spacings range from a_min (=a_min_frac*a_0) to a_max (=a_max_frac*a_0) where a_0, a_min_frac, and a_max_frac are read from stdin (a_0 is typically approximately equal to the equilibrium lattice constant). The precise scaling and number of lattice spacings sampled between a_min and a_0 (a_0 and a_max) is specified by two additional parameters passed from stdin: N_lower and samplespacing_lower (N_upper and samplespacing_upper). Please see README.txt for further details.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Cohesive energy versus lattice constant curve for bcc Al v003 view 4191
Cohesive energy versus lattice constant curve for bcc Cu v003 view 4255
Cohesive energy versus lattice constant curve for diamond Al v003 view 4351
Cohesive energy versus lattice constant curve for diamond Cu v003 view 4127
Cohesive energy versus lattice constant curve for fcc Al v003 view 4063
Cohesive energy versus lattice constant curve for fcc Cu v003 view 4223
Cohesive energy versus lattice constant curve for sc Al v003 view 4255
Cohesive energy versus lattice constant curve for sc Cu v003 view 4223


Elastic constants for cubic crystals at zero temperature and pressure v006

Creators: Junhao Li and Ellad Tadmor
Contributor: tadmor
Publication Year: 2019
DOI: https://doi.org/10.25950/5853fb8f

Computes the cubic elastic constants for some common crystal types (fcc, bcc, sc, diamond) by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for bcc Al at zero temperature v006 view 3519
Elastic constants for bcc Cu at zero temperature v006 view 3295
Elastic constants for diamond Al at zero temperature v001 view 30102
Elastic constants for diamond Cu at zero temperature v001 view 50735
Elastic constants for fcc Al at zero temperature v006 view 7421
Elastic constants for fcc Cu at zero temperature v006 view 3615
Elastic constants for sc Al at zero temperature v006 view 3583
Elastic constants for sc Cu at zero temperature v006 view 3391


Elastic constants for hexagonal crystals at zero temperature v004

Creators: Junhao Li
Contributor: jl2922
Publication Year: 2019
DOI: https://doi.org/10.25950/d794c746

Computes the elastic constants for hcp crystals by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for hcp Al at zero temperature v004 view 3215
Elastic constants for hcp Cu at zero temperature v004 view 3184


Relaxed energy as a function of tilt angle for a symmetric tilt grain boundary within a cubic crystal v002

Creators: Brandon Runnels
Contributor: brunnels
Publication Year: 2019
DOI: https://doi.org/10.25950/4723cee7

Computes grain boundary energy for a range of tilt angles given a crystal structure, tilt axis, and material.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Relaxed energy as a function of tilt angle for a 100 symmetric tilt grain boundary in fcc Al v002 view 3049064
Relaxed energy as a function of tilt angle for a 100 symmetric tilt grain boundary in fcc Cu v000 view 4614846
Relaxed energy as a function of tilt angle for a 110 symmetric tilt grain boundary in fcc Al v000 view 8519974
Relaxed energy as a function of tilt angle for a 110 symmetric tilt grain boundary in fcc Cu v000 view 14840864
Relaxed energy as a function of tilt angle for a 111 symmetric tilt grain boundary in fcc Al v000 view 4670175
Relaxed energy as a function of tilt angle for a 111 symmetric tilt grain boundary in fcc Cu v000 view 8036333
Relaxed energy as a function of tilt angle for a 112 symmetric tilt grain boundary in fcc Al v000 view 20891847
Relaxed energy as a function of tilt angle for a 112 symmetric tilt grain boundary in fcc Cu v000 view 34061036


Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure v007

Creators: Daniel S. Karls and Junhao Li
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/2765e3bf

Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium zero-temperature lattice constant for bcc Al v007 view 5022
Equilibrium zero-temperature lattice constant for bcc Cu v007 view 5630
Equilibrium zero-temperature lattice constant for diamond Al v007 view 8637
Equilibrium zero-temperature lattice constant for diamond Cu v007 view 11420
Equilibrium zero-temperature lattice constant for fcc Al v007 view 20089
Equilibrium zero-temperature lattice constant for fcc Cu v007 view 14139
Equilibrium zero-temperature lattice constant for sc Al v007 view 8061
Equilibrium zero-temperature lattice constant for sc Cu v007 view 6686


Equilibrium lattice constants for hexagonal bulk structures at zero temperature and pressure v005

Creators: Daniel S. Karls and Junhao Li
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/c339ca32

Calculates lattice constant of hexagonal bulk structures at zero temperature and pressure by using simplex minimization to minimize the potential energy.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium lattice constants for hcp Al v005 view 105409
Equilibrium lattice constants for hcp Cu v005 view 153768


Phonon dispersion relations for an fcc lattice v004

Creators: Matt Bierbaum
Contributor: mattbierbaum
Publication Year: 2019
DOI: https://doi.org/10.25950/64f4999b

Calculates the phonon dispersion relations for fcc lattices and records the results as curves.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Phonon dispersion relations for fcc Al v004 view 59148
Phonon dispersion relations for fcc Cu v004 view 61963


Stacking and twinning fault energies of an fcc lattice at zero temperature and pressure v002

Creators: Subrahmanyam Pattamatta
Contributor: SubrahmanyamPattamatta
Publication Year: 2019
DOI: https://doi.org/10.25950/b4cfaf9a

Intrinsic and extrinsic stacking fault energies, unstable stacking fault energy, unstable twinning energy, stacking fault energy as a function of fractional displacement, and gamma surface for a monoatomic FCC lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Stacking and twinning fault energies for fcc Al v002 view 6996762
Stacking and twinning fault energies for fcc Cu v002 view 9280137


High-symmetry surface energies in cubic lattices and broken bond model v004

Creators: Matt Bierbaum
Contributor: mattbierbaum
Publication Year: 2019
DOI: https://doi.org/10.25950/6c43a4e6

Calculates the surface energy of several high symmetry surfaces and produces a broken-bond model fit. In latex form, the fit equations are given by:

E_{FCC} (\vec{n}) = p_1 (4 \left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\right)) + p_2 (8 \left( |x| + |y| + |z|\right)) + p_3 (2 ( |x+ 2y + z| + |x+2y-z| + |x-2y + z| + |x-2y-z| + |2x+y+z| + |2x+y-z| +|2x-y+z| +|2x-y-z| +|x+y+2z| +|x+y-2z| +|x-y+2z| +|x-y-2z| ) + c

E_{BCC} (\vec{n}) = p_1 (6 \left( | x+y+z| + |x+y-z| + |-x+y-z| + |x-y+z| \right)) + p_2 (8 \left( |x| + |y| + |z|\right)) + p_3 (4 \left( |x+y| + |x-y| + |x+z| + |x-z| + |z+y| +|z-y|\right)) +c.

In Python, these two fits take the following form:

def BrokenBondFCC(params, index):

import numpy
x, y, z = index
x = x / numpy.sqrt(x**2.+y**2.+z**2.)
y = y / numpy.sqrt(x**2.+y**2.+z**2.)
z = z / numpy.sqrt(x**2.+y**2.+z**2.)

return params[0]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*(abs(x+2*y+z) + abs(x+2*y-z) +abs(x-2*y+z) +abs(x-2*y-z) + abs(2*x+y+z) +abs(2*x+y-z) +abs(2*x-y+z) +abs(2*x-y-z) + abs(x+y+2*z) +abs(x+y-2*z) +abs(x-y+2*z) +abs(x-y-2*z))+params[3]

def BrokenBondBCC(params, x, y, z):


import numpy
x, y, z = index
x = x / numpy.sqrt(x**2.+y**2.+z**2.)
y = y / numpy.sqrt(x**2.+y**2.+z**2.)
z = z / numpy.sqrt(x**2.+y**2.+z**2.)

return params[0]*6*(abs(x+y+z) + abs(x-y-z) + abs(x-y+z) + abs(x+y-z)) + params[1]*8*(abs(x) + abs(y) + abs(z)) + params[2]*4* (abs(x+y) + abs(x-y) + abs(x+z) + abs(x-z) + abs(z+y) + abs(z-y)) + params[3]
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Broken-bond fit of high-symmetry surface energies in fcc Al v004 view 96671
Broken-bond fit of high-symmetry surface energies in fcc Cu v004 view 137905


CohesiveEnergyVsLatticeConstant__TD_554653289799_002

ElasticConstantsCubic__TD_011862047401_004
Test Error Categories Link to Error page
Elastic constants for fcc Cu at zero temperature other view

ElasticConstantsFirstStrainGradient__TD_361847723785_000

ElasticConstantsHexagonal__TD_612503193866_003
Test Error Categories Link to Error page
Elastic constants for hcp Al at zero temperature other view

Grain_Boundary_Symmetric_Tilt_Relaxed_Energy_vs_Angle_Cubic_Crystal__TD_410381120771_000

LatticeInvariantShearPathCubicCrystalCBKIM__TD_083627594945_001

LinearThermalExpansionCoeffCubic__TD_522633393614_001

PhononDispersionCurve__TD_530195868545_003
Test Error Categories Link to Error page
Phonon dispersion relations for fcc Cu other view

SurfaceEnergyCubicCrystalBrokenBondFit__TD_955413365818_003

VacancyFormationEnergyRelaxationVolume__TD_647413317626_000

VacancyFormationMigration__TD_554849987965_000

No Driver
Verification Check Error Categories Link to Error page
UnitConversion__VC_128739598203_000 mismatch view



Wiki is ready to accept new content.

Login to edit Wiki content