Jump to: Tests | Visualizers | Files | Wiki

Sim_LAMMPS_ADP_StarikovSmirnova_2021_ZrNb__SM_993852507257_000

Interatomic potential for Niobium (Nb), Zirconium (Zr).
Use this Potential

Title
A single sentence description.
LAMMPS ADP potential for the Zr-Nb system developed by Starikov and Smirnova (2021) v000
Description This is an interatomic potential for the binary Zr-Nb system, taking into account a wide range of the components concentrations. The potential was developed by virtue of the force-matching method that is capable of ensuring a high accuracy at the description of the complex systems containing diverse crystal phases.
Species
The supported atomic species.
Nb, Zr
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
None
Content Origin https://www.ctcms.nist.gov/potentials/entry/2021--Starikov-S-Smirnova-D--Zr-Nb/
Contributor ilia Nikiforov
Maintainer ilia Nikiforov
Developer Sergey Starikov
Daria Smirnova
Published on KIM 2022
How to Cite

This Simulator Model originally published in [1] is archived in OpenKIM [2-4].

[1] Starikov S, Smirnova D. Optimized interatomic potential for atomistic simulation of Zr-Nb alloy. Computational Materials Science [Internet]. 2021;197:110581. Available from: https://www.sciencedirect.com/science/article/pii/S0927025621003086 doi:10.1016/j.commatsci.2021.110581 — (Primary Source) A primary source is a reference directly related to the item documenting its development, as opposed to other sources that are provided as background information.

[2] LAMMPS ADP potential for the Zr-Nb system developed by Starikov and Smirnova (2021) v000. OpenKIM; 2022. doi:10.25950/2ceadfd9

[3] Tadmor EB, Elliott RS, Sethna JP, Miller RE, Becker CA. The potential of atomistic simulations and the Knowledgebase of Interatomic Models. JOM. 2011;63(7):17. doi:10.1007/s11837-011-0102-6

[4] Elliott RS, Tadmor EB. Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API). OpenKIM; 2011. doi:10.25950/ff8f563a

Click here to download the above citation in BibTeX format.
Funding Award Number: STA 1732/1-1
Funder: Deutsche Forschungsgemeinschaft

Short KIM ID
The unique KIM identifier code.
SM_993852507257_000
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
Sim_LAMMPS_ADP_StarikovSmirnova_2021_ZrNb__SM_993852507257_000
DOI 10.25950/2ceadfd9
https://doi.org/10.25950/2ceadfd9
https://search.datacite.org/works/10.25950/2ceadfd9
KIM Item TypeSimulator Model
KIM API Version2.2
Simulator Name
The name of the simulator as defined in kimspec.edn.
LAMMPS
Potential Type adp
Simulator Potential adp

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-species-supported-as-stated mandatory
The model supports all species it claims to support; see full description.
Results Files
P vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
N/A vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
F vc-forces-numerical-derivative consistency
Forces computed by the model agree with numerical derivatives of the energy; see full description.
Results Files
F vc-dimer-continuity-c1 informational
The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.
Results Files
P vc-objectivity informational
Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.
Results Files
P vc-inversion-symmetry informational
Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.
Results Files
F vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files
N/A vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Zr
Species: Nb


Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

Species: Nb
Species: Zr


Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Nb
Species: Zr


FCC Elastic Constants

This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Zr
Species: Nb


FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Nb
Species: Zr


FCC Stacking Fault Energies

This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Surface Energies

This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Zr
Species: Nb


Cubic Crystal Basic Properties Table

Species: Nb

Species: Zr





Cohesive energy versus lattice constant curve for monoatomic cubic lattices v003

Creators: Daniel S. Karls
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/64cb38c5

This Test Driver uses LAMMPS to compute the cohesive energy of a given monoatomic cubic lattice (fcc, bcc, sc, or diamond) at a variety of lattice spacings. The lattice spacings range from a_min (=a_min_frac*a_0) to a_max (=a_max_frac*a_0) where a_0, a_min_frac, and a_max_frac are read from stdin (a_0 is typically approximately equal to the equilibrium lattice constant). The precise scaling and number of lattice spacings sampled between a_min and a_0 (a_0 and a_max) is specified by two additional parameters passed from stdin: N_lower and samplespacing_lower (N_upper and samplespacing_upper). Please see README.txt for further details.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Cohesive energy versus lattice constant curve for bcc Nb v003 view 3914
Cohesive energy versus lattice constant curve for bcc Zr v003 view 5144
Cohesive energy versus lattice constant curve for diamond Nb v003 view 3690
Cohesive energy versus lattice constant curve for diamond Zr v003 view 3914
Cohesive energy versus lattice constant curve for fcc Nb v003 view 3802
Cohesive energy versus lattice constant curve for fcc Zr v003 view 4197
Cohesive energy versus lattice constant curve for sc Nb v003 view 3620
Cohesive energy versus lattice constant curve for sc Zr v003 view 3909


Elastic constants for cubic crystals at zero temperature and pressure v006

Creators: Junhao Li and Ellad Tadmor
Contributor: tadmor
Publication Year: 2019
DOI: https://doi.org/10.25950/5853fb8f

Computes the cubic elastic constants for some common crystal types (fcc, bcc, sc, diamond) by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for bcc Nb at zero temperature v006 view 28386
Elastic constants for bcc Zr at zero temperature v006 view 41409
Elastic constants for diamond Nb at zero temperature v001 view 499747
Elastic constants for diamond Zr at zero temperature v001 view 296341
Elastic constants for fcc Nb at zero temperature v006 view 31793
Elastic constants for fcc Zr at zero temperature v006 view 34095
Elastic constants for sc Nb at zero temperature v006 view 16288
Elastic constants for sc Zr at zero temperature v006 view 23220


Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure v007

Creators: Daniel S. Karls and Junhao Li
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/2765e3bf

Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium zero-temperature lattice constant for bcc Nb v007 view 34155
Equilibrium zero-temperature lattice constant for bcc Zr v007 view 32603
Equilibrium zero-temperature lattice constant for diamond Nb v007 view 37845
Equilibrium zero-temperature lattice constant for diamond Zr v007 view 37735
Equilibrium zero-temperature lattice constant for fcc Nb v007 view 32583
Equilibrium zero-temperature lattice constant for fcc Zr v007 view 33918
Equilibrium zero-temperature lattice constant for sc Nb v007 view 31310
Equilibrium zero-temperature lattice constant for sc Zr v007 view 30749


Equilibrium lattice constants for hexagonal bulk structures at zero temperature and pressure v005

Creators: Daniel S. Karls and Junhao Li
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/c339ca32

Calculates lattice constant of hexagonal bulk structures at zero temperature and pressure by using simplex minimization to minimize the potential energy.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium lattice constants for hcp Nb v005 view 492959




Wiki is ready to accept new content.

Login to edit Wiki content