Jump to: Tests | Visualizers | Files | Wiki

Sim_LAMMPS_BOP_MurdickZhouWadley_2006_GaAs__SM_104202807866_000

Interatomic potential for Arsenic (As), Gallium (Ga).
Use this Potential

Title
A single sentence description.
LAMMPS BOP potential for the Ga-As system developed by Murdick et al. (2006) v000
Description An analytic, bond-order potential (BOP) is proposed and parametrized for the gallium arsenide system. The potential addresses primary (σ) and secondary (π) bonding and the valence-dependent character of heteroatomic bonding, and it can be combined with an electron counting potential to address the distribution of electrons on the GaAs surface. The potential was derived from a tight-binding description of covalent bonding by retaining the first two levels of an expanded Green’s function for the σ and π bond-order terms. Predictions using the potential were compared with independent estimates for the structures and binding energy of small clusters (dimers, trimers, and tetramers) and for various bulk lattices with coordinations varying from 4 to 12. The structure and energies of simple point defects and melting transitions were also investigated. The relative stabilities of the (001) surface reconstructions of GaAs were well predicted, especially under high-arsenic-overpressure conditions. The structural and binding energy trends of this GaAs BOP generally match experimental observations and ab initio calculations.
Species
The supported atomic species.
As, Ga
Disclaimer
A statement of applicability provided by the contributor, informing users of the intended use of this KIM Item.
None
Content Origin LAMMPS package 22-Sep-2017
Contributor Ronald E. Miller
Maintainer Ronald E. Miller
Published on KIM 2019
How to Cite Click here to download this citation in BibTeX format.
Funding Not available
Short KIM ID
The unique KIM identifier code.
SM_104202807866_000
Extended KIM ID
The long form of the KIM ID including a human readable prefix (100 characters max), two underscores, and the Short KIM ID. Extended KIM IDs can only contain alpha-numeric characters (letters and digits) and underscores and must begin with a letter.
Sim_LAMMPS_BOP_MurdickZhouWadley_2006_GaAs__SM_104202807866_000
DOI 10.25950/b5875acc
https://doi.org/10.25950/b5875acc
https://commons.datacite.org/doi.org/10.25950/b5875acc
KIM Item TypeSimulator Model
KIM API Version2.1
Simulator Name
The name of the simulator as defined in kimspec.edn.
LAMMPS
Potential Type bop
Simulator Potential bop

(Click here to learn more about Verification Checks)

Grade Name Category Brief Description Full Results Aux File(s)
P vc-species-supported-as-stated mandatory
The model supports all species it claims to support; see full description.
Results Files
F vc-periodicity-support mandatory
Periodic boundary conditions are handled correctly; see full description.
Results Files
P vc-permutation-symmetry mandatory
Total energy and forces are unchanged when swapping atoms of the same species; see full description.
Results Files
B vc-forces-numerical-derivative consistency
Forces computed by the model agree with numerical derivatives of the energy; see full description.
Results Files
F vc-dimer-continuity-c1 informational
The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.
Results Files
P vc-objectivity informational
Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.
Results Files
P vc-inversion-symmetry informational
Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.
Results Files
P vc-memory-leak informational
The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.
Results Files
N/A vc-thread-safe mandatory
The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.
Results Files


BCC Lattice Constant

This bar chart plot shows the mono-atomic body-centered cubic (bcc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Ga
Species: As


Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

Species: Ga
Species: As


Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: As
Species: Ga


Dislocation Core Energies

This graph shows the dislocation core energy of a cubic crystal at zero temperature and pressure for a specific set of dislocation core cutoff radii. After obtaining the total energy of the system from conjugate gradient minimizations, non-singular, isotropic and anisotropic elasticity are applied to obtain the dislocation core energy for each of these supercells with different dipole distances. Graphs are generated for each species supported by the model.

(No matching species)

FCC Elastic Constants

This bar chart plot shows the mono-atomic face-centered cubic (fcc) elastic constants predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: As
Species: Ga


FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Ga
Species: As


FCC Stacking Fault Energies

This bar chart plot shows the intrinsic and extrinsic stacking fault energies as well as the unstable stacking and unstable twinning energies for face-centered cubic (fcc) predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

FCC Surface Energies

This bar chart plot shows the mono-atomic face-centered cubic (fcc) relaxed surface energies predicted by the current model (shown in blue) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

(No matching species)

SC Lattice Constant

This bar chart plot shows the mono-atomic simple cubic (sc) lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Species: Ga
Species: As


Cubic Crystal Basic Properties Table

Species: As

Species: Ga





Cohesive energy versus lattice constant curve for monoatomic cubic lattices v003

Creators:
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/64cb38c5

This Test Driver uses LAMMPS to compute the cohesive energy of a given monoatomic cubic lattice (fcc, bcc, sc, or diamond) at a variety of lattice spacings. The lattice spacings range from a_min (=a_min_frac*a_0) to a_max (=a_max_frac*a_0) where a_0, a_min_frac, and a_max_frac are read from stdin (a_0 is typically approximately equal to the equilibrium lattice constant). The precise scaling and number of lattice spacings sampled between a_min and a_0 (a_0 and a_max) is specified by two additional parameters passed from stdin: N_lower and samplespacing_lower (N_upper and samplespacing_upper). Please see README.txt for further details.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Cohesive energy versus lattice constant curve for bcc As v003 view 3007
Cohesive energy versus lattice constant curve for bcc Ga v003 view 3135
Cohesive energy versus lattice constant curve for diamond As v003 view 2623
Cohesive energy versus lattice constant curve for diamond Ga v003 view 2687
Cohesive energy versus lattice constant curve for fcc As v003 view 3071
Cohesive energy versus lattice constant curve for fcc Ga v003 view 3327
Cohesive energy versus lattice constant curve for sc As v003 view 2527
Cohesive energy versus lattice constant curve for sc Ga v003 view 2559


Elastic constants for cubic crystals at zero temperature and pressure v006

Creators: Junhao Li and Ellad Tadmor
Contributor: tadmor
Publication Year: 2019
DOI: https://doi.org/10.25950/5853fb8f

Computes the cubic elastic constants for some common crystal types (fcc, bcc, sc, diamond) by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for bcc As at zero temperature v006 view 7198
Elastic constants for bcc Ga at zero temperature v006 view 7805
Elastic constants for diamond As at zero temperature v001 view 30358
Elastic constants for diamond Ga at zero temperature v001 view 18394
Elastic constants for fcc As at zero temperature v006 view 8189
Elastic constants for fcc Ga at zero temperature v006 view 7965
Elastic constants for sc As at zero temperature v006 view 4095
Elastic constants for sc Ga at zero temperature v006 view 7293


Elastic constants for hexagonal crystals at zero temperature v004

Creators: Junhao Li
Contributor: jl2922
Publication Year: 2019
DOI: https://doi.org/10.25950/d794c746

Computes the elastic constants for hcp crystals by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Elastic constants for hcp As at zero temperature v004 view 6399
Elastic constants for hcp Ga at zero temperature v004 view 5539


Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure v007

Creators: Daniel S. Karls and Junhao Li
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/2765e3bf

Equilibrium lattice constant and cohesive energy of a cubic lattice at zero temperature and pressure.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium zero-temperature lattice constant for bcc As v007 view 3839
Equilibrium zero-temperature lattice constant for bcc Ga v007 view 5502
Equilibrium zero-temperature lattice constant for diamond As v007 view 102109
Equilibrium zero-temperature lattice constant for diamond Ga v007 view 369249
Equilibrium zero-temperature lattice constant for fcc As v007 view 17786
Equilibrium zero-temperature lattice constant for fcc Ga v007 view 18074
Equilibrium zero-temperature lattice constant for sc As v007 view 5374
Equilibrium zero-temperature lattice constant for sc Ga v007 view 5726


Equilibrium lattice constants for hexagonal bulk structures at zero temperature and pressure v005

Creators: Daniel S. Karls and Junhao Li
Contributor: karls
Publication Year: 2019
DOI: https://doi.org/10.25950/c339ca32

Calculates lattice constant of hexagonal bulk structures at zero temperature and pressure by using simplex minimization to minimize the potential energy.
Test Test Results Link to Test Results page Benchmark time
Usertime multiplied by the Whetstone Benchmark. This number can be used (approximately) to compare the performance of different models independently of the architecture on which the test was run.

Measured in Millions of Whetstone Instructions (MWI)
Equilibrium lattice constants for hcp As v005 view 20321906
Equilibrium lattice constants for hcp Ga v005 view 22568986


  • No Errors associated with this Model



Wiki is ready to accept new content.

Login to edit Wiki content